Seleziona una pagina
Luna piena al perigeo

Luna piena al perigeo

Nuovo appuntamento con il perigeo dell’orbita lunare il 19 febbraio, con il nostro satellite naturale nella sua fase piena alla minima distanza dalla Terra (356.761 km), che fa apparire il disco decisamente più grande. Fenomeno apprezzabile a occhio nudo e preda non solo di astronomi e astrofili, ma di milioni di persone pronte a catturarne l’immagine con i più svariati strumenti ottici e fotografici. Proprio quarant’anni fa Richard Nolle, che in realtà era un astrologo, coniò il termine “superluna”, adottato dai media ma decisamente poco amato dalla comunità scientifica. Martedì 19 febbraio la luna sorge in Italia tra le 17.20 e le 18.00 e apparirà un poco più grande del solito, con il disco maggiorato di circa il 7% rispetto al consueto e il 30% più luminoso. Fenomeno destinato a ripetersi il 19 marzo, ma in questo caso la distanza del perigeo sarà raggiunta un giorno e cinque ore prima della luna piena.

Super-terre gemelle

Super-terre gemelle

Hanno più o meno la stessa dimensione, circa una volta e mezza il raggio della Terra, ma una eccezionale diversità nella densità media e dunque nella composizione chimica. Sono gli esopianeti Kepler-107b e Kepler-107c, due super-terre calde che hanno masse rispettivamente di circa tre e nove masse terresti e orbitano attorno alla loro stella a distanze molto ravvicinate da essa: 6,7 e 9 milioni di chilometri rispettivamente, cioè il 4,5% e il 6% della distanza Terra-Sole. A caratterizzarle è stato un team internazionale di ricercatori guidati da Aldo Bonomo dell’Istituto Nazionale di Astrofisica (INAF) a Torino, grazie ai dati raccolti dallo spettrografo HARPS-N installato al Telescopio Nazionale Galileo sulle Isole Canarie. Lo studio ha mostrato che la super-terra più massiva e densa Kepler-107c contiene nel suo nucleo una frazione in massa di ferro che è almeno il doppio della sua “gemella” Kepler-107b. Tale diversità in composizione può essere spiegata ipotizzando che la super-terra Kepler-107c, poco dopo la sua formazione, abbia subìto un impatto frontale ad elevata velocità con un protopianeta della stessa massa o più collisioni con protopianeti di massa inferiore. Questi impatti avrebbero squarciato il suo mantello roccioso di silicati (composti del silicio, ossigeno e magnesio o altri metalli) riducendone l’abbondanza rispetto al ferro e rendendo così la super-terra Kepler-107c più densa.

Collisioni giganti fra protopianeti si sono verificate nel Sistema solare e hanno verosimilmente dato origine al sistema Terra-Luna, dopo l’impatto del nostro pianeta con un protopianeta delle dimensioni di Marte, all’elevata obliquità dell’orbita di Urano e alla composizione ricca di ferro di Mercurio. “È però la prima volta che, con ogni probabilità, ne vediamo gli effetti in un sistema planetario extrasolare”, afferma Bonomo, primo autore dell’articolo della scoperta pubblicato sulla rivista Nature Astronomy. “Solo con lo scenario di un impatto fra protopianeti riusciamo a spiegare il fatto che le due super-terre Kepler-107b e c abbiano essenzialmente la stessa dimensione ma composizioni così diverse. Ne siamo rimasti sorpresi”. Le due super-terre fanno parte del sistema planetario Kepler-107 che contiene altri due pianeti di piccola taglia: Kepler-107d e Kepler-107e. Si tratta di un sistema planetario estremamente compatto perché le orbite dei suoi quattro pianeti sono vicine fra loro e tutte contenute dentro quella di Mercurio. I periodi orbitali dei pianeti b, c, d ed e, e cioè le durate del loro “anno”, sono rispettivamente pari a 3.2, 4.9, 8.0 e 14.7 giorni. Secondo modelli di dinamica planetaria, la configurazione orbitale dei pianeti implica che questi si siano formati molto più lontano dalla loro stella rispetto alle orbite attuali e siano successivamente migrati verso di essa. I quattro pianeti del sistema Kepler-107 erano già stati scoperti dal telescopio della NASA Kepler grazie all’osservazione dei loro transiti, ovvero delle diminuzioni di luce stellare durante il passaggio dei pianeti davanti alla stella, il che dà anche un’informazione sulla dimensione dei pianeti stessi.

(nell’immagine: rappresentazione artistica dell’impatto gigante sull’esopianeta Kepler-107c. L’immagine è stata riadattata partendo da quella realizzata da NASA/JPL-Caltech)

 

Un possibile protopianeta

Un possibile protopianeta

Il cacciatore di pianeti SPHERE, montato in uno dei telescopi del VLT (Very Large Telescope) in Cile, ha analizzato il disco ricco di gas scoprendo la presenza di un oggetto che potrebbe essere un protopianeta, osservando le immagini ad alto contrasto e alta risoluzione dei dintorni della giovane stella HD169142. Il disco osservato e studiato da un gruppo di ricercatori dell’Istituto Nazionale di Astrofisica, guidato dall’astronomo Raffaele Gratton, è formato da tre anelli e all’interno di una delle cavità vi sono sia bracci di spirale che addensamenti di polvere. Le spirali possono essere causate dalla presenza di un pianeta. Secondo i ricercatori, questo oggetto si troverebbe lungo il braccio principale e presumibilmente nella cavità tra il secondo e il terzo anello. I pianeti si formano nei dischi protostellari, durante lo stesso evento che porta alla formazione della stella. L’osservazione di pianeti appena formati fornisce informazioni chiave sui dettagli del meccanismo di formazione. Ci si aspetta che i pianeti giovani causino cavità e spirali nei dischi. Tuttavia, i pianeti più giovani sono circondati da nubi di polvere che ne rendono difficile l’osservazione diretta e quindi la conferma della loro presenza. Per questo motivo, vi sono pochissime rivelazioni chiare di pianeti in una simile fase evolutiva, in dischi ancora ricchi di gas; un caso particolarmente interessante riguarda l’ambiente attorno alla stella PDS70, recentemente scrutato sempre da SPHERE. Mentre molti degli addensamenti di polvere sono all’interno degli anelli del disco della stella HD169142, uno si trova nella cavità tra i due anelli esterni. Numerosi aspetti del sistema trovano una ragionevole spiegazione se si assume che quell’addensamento sia una nube che avvolge il pianeta ritenuto responsabile delle spirali e della cavità osservate da SPHERE. Il pianeta non è visibile alle lunghezze d’onda più corte, dove si vede solo la nube che lo circonda illuminata dalla stella, ma potrebbe essere responsabile di quello che si vede alle lunghezze d’onda più lunghe (oltre 2 micron). È possibile stimare una massa usando dati dinamici e fotometri: il risultato è tra 1 e 4 volte la massa di Giove.

 

Glicolonitrile molecola di vita

Glicolonitrile molecola di vita

Attorno a una stella in formazione di taglia simile al nostro Sole, scoperta da un team internazionale di scienziati, tra cui Víctor M. Rivilla dell’Istituto Nazionale di Astrofisica, la molecola organica HOCH2CN, un precursore chiave nel processo di assemblaggio dei “mattoni” di RNA e DNA. E’ la prima volta che viene individuata l’esistenza di molecole prebiotiche di glicolonitrile (HOCH2CN) nello spazio, per la precisione nel materiale che circonda la stella in formazione IRAS16293-2422 B, distante circa 450 anni luce da noi. La scoperta, importante per lo studio delle molecole di DNA e RNA nello spazio, è stata realizzata grazie ai dati raccolti dalle antenne di ALMA in Cile ed è stata appena pubblicata sulla rivista Monthly Notices of the Royal Astronomical Society Letters. Tra gli autori figurano anche Víctor M. Rivilla, ricercatore dell’Istituto Nazionale di Astrofisica di Arcetri a Firenze, e Leonardo Testi, astronomo dell’ESO e associato INAF. Tra le numerose teorie che ritengono l’RNA primordiale alla base della vita come la conosciamo, la molecola di glicolonitrile è riconosciuta come un precursore chiave nei processi che portano alla formazione delle basi azotate, come ad esempio l’adenina (una delle componenti fondamentali delle catene di RNA e DNA). Ricordiamo che un team di ricercatori guidato da RiVilla ha scoperto di recente anche un altro precursore di questo nucleotide, la cianometanimina, all’interno di una nube molecolare nella nostra galassia.

“La nostra scoperta – afferma Rivilla è un nuovo passo avanti nella ricerca della vita nello spazio. Il glicolonitrile infatti è una molecola molto interessante dal punto di vista astrobiologico perché è considerata un ingrediente chiave per formare alcuni “mattoni” fondamentali della vita, come i nucleotidi dell’RNA e DNA, e anche aminoacidi come la glicina, presente in molte proteine”. La protostella in prossimità della quale è stato individuato il glicolonitrile si trova a 450 anni luce dalla Terra in direzione della costellazione di Ofiuco, all’interno della regione denominata Rho Ophiuchi, ricca di giovani stelle nelle prime fasi della loro evoluzione, circondate da un bozzolo di polvere e gas – condizioni simili a quelle in cui si formò il nostro Sistema solare. Rilevare le molecole prebiotiche nelle protostelle di tipo solare aiuta i ricercatori a comprendere meglio la formazione del nostro sistema planetario e in generale i processi che possono innescare l’insorgenza di forme elementari di vita nello spazio.

Nella stessa zona di formazione stellare, più di un anno e mezzo fa, un altro gruppo di ricercatori, che vedeva coinvolti anche i ricercatori dell’INAF, ha trovato tracce di isocianato di metile attorno a stelle simili al Sole in una fase precoce della loro formazione. Si tratta di una delle molecole complesse alla base della vita, ma è anche un isomero del glicolonitrile (cioè è composto dagli stessi atomi ma disposti in maniera leggermente diversa). I dati di ALMA sono stati fondamentali per identificare le firme chimiche del glicolonitrile e per determinare le condizioni in cui è stata trovata la molecola.

La notte dell’eclissi lunare

La notte dell’eclissi lunare

Decine di milioni di persone hanno potuto ammirare il 21 gennaio 2019 l’eclissi lunare più lunga e luminosa del secolo, con la Luna si in fase di plenilunio e alla minima distanza dalla Terra (357.344 km di perigeo), si è trovata nel cono d’ombra creato dal nostro pianeta. L’allineamento Sole-Terra-Luna ha dato vita a un’eclissi lunare totale caratterizzata dalla tipica colorazione rossastra, effetto prodotto dalla colorazione che la luce solare assume attraversando gli strati al bordo esterno dell’atmosfera terrestre per proiettarsi sul disco lunare. Lo spettacolo della Superluna rossa si è presentato nella sua interezza agli occhi degli abitanti delle Americhe, dell’Europa, dell’Africa occidentale, della Russia nord-orientale e del Pacifico orientale. La luna è entrata in penombra alle 3:36 notturne ora italiana e nel cono d’ombra della Terra alle 5:41 e l’eclissi ha raggiunto il suo culmine alle 6:12, mentre alle 6:43 la Luna ha iniziato ad uscire dal cono d’ombra per poi scomparire all’orizzonte. Dall’Italia, infatti, non è stato possibile seguire la fase conclusiva dell’eclissi, che sarebbe stata comunque impedita visivamente dal sopraggiungere dell’alba. La prossima eclisse totale di Luna di cui sarà visibile tutta la fase di totalità avverrà tra 9 anni 11 mesi e 10 giorni (31 dicembre 2028). La prossima eclisse totale di Luna visibile in tutte le sue fasi avverrà tra 10 anni 10 mesi 29 giorni (20 dicembre 2029).

Arrivati a Ultima Thule

Arrivati a Ultima Thule

Ultima Thule, l’asteroide scoperto dal telescopio orbitale Hubble nel giugno 2014 e che si trova a 6,5 miliardi di chilometri dalla Terra, è diventato l’oggetto cosmico più lontano ad essere stato avvicinato da uno strumento inviato dall’uomo nello spazio. La sonda New Horizons della NASA, lanciata il 19 gennaio 2006 da Cape Canaveral con il potente razzo Atlas V e che ha svelato il mondo di Plutone sorvolandolo il 14 luglio del 2015, si è spinta nella Fascia di Kuiper, la culla degli corpi primordiali testimoni della nascita del sistema solare, arrivando a sfiorare a una distanza di 3.500 km, in questa regione buia, fredda e profonda, il sasso celeste a forma di tubero ribattezzato con il nome dell’isola mitica descritta nei diari dell’esploratore greco Pitea nel terzo secolo avanti Cristo. Il contatto è avvenuto alle 6:33 del mattino (ora italiana) del 1 gennaio 2019. Un inizio d’anno che segna una pietra miliare nella storia dell’esplorazione spaziale, sia perché dal Jet Propulsion Laboratory della NASA a Pasadena e dalla Johns Hopkins University Applied Physics Laboratory nel Maryland sono stati capaci di guidare con la massima precisione la sonda “New Horizons” all’incontro ravvicinato, sia per i risultati scientifici attesi e che promettono di fornire nuove informazioni sullo stato di formazione del sistema solare avvenuto 4,6 miliardi di anni fa. E se dai centri di controllo della missione si è dovuto attendere sei ore per ricevere il segnale che confermasse l’esito positivo del rendez-vous cosmico, ci vorranno 20 mesi per acquisire i dati trasmessi dalla sonda che assommano a sette gigabyte, comprese le immagini in alta risoluzione destinati a rendere più nitido e comprensibile Ultima Thule nella forma e nelle dimensioni, con un diametro stimato tra i 40 e i 50 chilometri. Il passaggio ravvicinato di New Horizons all’asteroide è avvenuto alla velocità di 14.4 km al secondo. Un battito di ciglia per fotografare un piccolo mondo lontano che rappresenta una miniera ricchissima di informazioni sull’alba del nostro sistema solare.