Seleziona una pagina
La più lunga eclissi lunare

La più lunga eclissi lunare

La sera del 27 luglio 2018 è destinata a passare alla storia per l’eclissi totale di Luna più lunga del secolo, accompagnata dalla contemporanea, grande e luminosa opposizione di Marte. La Luna, che sarà alla massima distanza dalla Terra, raggiungerà il centro dell’ombra terrestre, generando un’eclissi della durata di circa 103 minuti. Nella stessa notte, il Pianeta Rosso si troverà alla distanza minima dal Sole, al quale sarà opposto (la cosiddetta grande opposizione) e dunque in condizione tale da rendersi massimamente visibile. La Luna piena sorgerà poco prima delle 21, quando sarà già in penombra, mentre la fase di totalità dell’eclissi si verificherà tra le 21.30 e le 23.13. Il culmine dell’evento astronomico è previsto alle 22.22 ora italiana e per 11 minuti il nostro satellite naturale di colorerà di rosso. Ciò in quanto l’atmosfera terrestre filtra la maggior parte della luce blu della radiazione solare, rilasciando la luce arancione e rossa. Marte, sorgerà alle 21, poco al di sotto della Luna già in penombra. Luna in eclissi e Marte, distanziati di sei gradi nella stessa regione di cielo, creeranno un’immagine astronomica rara e spettacolare. Quello che l’astrofisico Gianluca Masi, Responsabile Scientifico del Virtual Telescope Project, definisce un raro e spettacolare abbraccio tra i due corpi celesti. Nel contempo, altri tre pianeti – Venere, Giove e Saturno – saranno ben visibili nel cielo. Ad arricchire l’osservazione celeste, anteprima del grande evento astronomico, il passaggio sull’Italia, intorno alle 21.15, della Stazione Spaziale internazionale.

La lunghezza temporale dell’eclissi lunare richiama la seconda legge di Keplero. La luna, perfettamente allineata a Sole e Terra, si troverà in prossimità dell’apogeo, poco oltre 400mila chilometri, percorrendo il tratto di orbita più lentamente rispetto a quando si trova in altri punti del suo percorso e permanendo di più nel cono d’ombra terrestre.

 

Il tramonto di Dawn

Il tramonto di Dawn

La sonda spaziale Dawn della NASA, a cui l’Italia contribuisce con un significativo contributo scientifico grazie all’Istituto Nazionale di Astrofisica (INAF) e il supporto dell’Agenzia Spaziale Italiana (ASI), si prepara a concludere, dopo 11 anni, la sua missione, la cui durata, grazie agli importanti risultati raggiunti, è stata estesa due volte. La sonda comunque continuerà ad esplorare e raccogliere immagini e altri dati anche durante queste ultime fasi di vita. Entro pochi mesi si prevede che Dawn esaurirà il carburante principale, l’idrazina, che le permette di controllare il suo posizionamento e la mantiene in comunicazione con la Terra. Quando ciò accadrà, probabilmente tra agosto e ottobre 2018, la navicella smetterà di funzionare ma rimarrà in orbita attorno al pianeta nano Cerere.

“Dawn è l’unico veicolo spaziale ad aver orbitato attorno a due destinazioni distinte dello spazio profondo. – commenta Raffaele Mugnuolo responsabile ASI per la missione Dawn – Ci ha dato vedute ravvicinate di Cerere e Vesta, i corpi più grandi tra gli asteroidi che si trovano nella fascia tra Marte e Giove. Durante 14 mesi in orbita dal 2011 al 2012, Dawn ha osservato e studiato Vesta dalla sua superficie al suo nucleo. In seguito ha effettuato una manovra senza precedenti abbandonando l’orbita e viaggiando attraverso la fascia principale degli asteroidi per più di due anni per raggiungere e orbitare attorno a Cerere, che ha poi osservato dal 2015”.

Su Cerere, la navicella spaziale ha scoperto depositi brillanti di sale che decorano il pianeta nano come un’infarinatura di diamanti. Ma i risultati scientifici che ne sono scaturiti sono ancora più avvincenti: i punti luminosi sono la prova di un oceano brillante i cui resti congelati, principalmente carbonato di sodio e cloruro di ammonio, sono esposti sulla superficie. La scoperta delle macchie, ora chiamate faculae, ha fornito un solido sostegno all’idea che Cerere possedesse un tempo un oceano globale, garantendogli un posto nella schiera dei mondi oceanici del Sistema solare che comprende anche diverse lune di Giove e Saturno. Tali scoperte sono state alimentate dalla grande efficienza della propulsione ionica. Dawn non è stata la prima sonda ad utilizzare la propulsione ionica, familiare ai fan della fantascienza e agli appassionati di spazio, ma ha spinto questa tecnologia fino ai suoi limiti di prestazioni e resistenza.

Dawn continua a inviare, di settimana in settimana, fotografie di Cerere molto ravvicinate, scattate da sole 22 miglia (35 chilometri) dalla superficie.

“Lo spettrometro italiano VIR sta tuttora acquisendo dati da bassa quota, che risultano essere i dati a più alta risoluzione spaziale finora acquisiti della superficie di Cerere. I nuovi dati, insieme a quelli degli altri strumenti, aiuteranno a capire meglio la formazione delle zone chiare ricche di carbonati caratteristiche della superficie di Cerere” dice Maria Cristina De Sanctis, principal investigator dello strumento VIR.

Anche se Dawn sta per concludere la propria missione, ulteriori scoperte scientifiche sono in arrivo. Oltre alle immagini ad alta risoluzione, la sonda raccoglie informazioni da diversi spettri, misure del flusso di raggi gamma e neutroni, riprese nell’infrarosso e visibile, nonché dati sulla gravità. Le osservazioni si concentrano sull’area attorno ai crateri Occator e Urvara, con l’obiettivo principale di comprendere l’evoluzione di Cerere e verificare, come ipotizzato, se vi sia attività geologica in corso sul pianeta nano, la cui superficie sembra essere modellata dagli impatti con altri asteroidi.

La missione Dawn è gestita dal Jet Propulsion Laboratory (JPL) per il Science Mission Directorate di Washington della NASA. Dawn è un progetto del Discovery Program, gestito dal Marshall Space Flight Center in Huntsville, Alabama della NASA. Il JPL è responsabile scientifico generale della missione. Lo spacecraft è stato progettato e costruito da Orbital ATK, Inc., di Dulles, Virginia. Il Centro aerospaziale tedesco, l’Istituto Max Planck per la ricerca sul sistema solare, l’Agenzia Spaziale Italiana e l’Istituto Nazionale di Astrofisica Nazionale sono partner internazionali del team di missione. Lo spettrometro VIR è stato realizzato dalla società Leonardo con il finanziamento e coordinamento dell’ASI e la supervisione scientifica dell’INAF.

 

Al via l’esperimento Olimpo

Al via l’esperimento Olimpo

Nella mattinata di sabato 14 luglio è stato lanciato dalle Isole Svalbard l’esperimento Olimpo, dedicato a innovative osservazioni cosmologiche che forniranno informazioni sugli ammassi di galassie, sulle galassie primordiali e sul loro contenuto di materia oscura. Si tratta di un telescopio con lo specchio primario di più di due metri e mezzo di diametro, equipaggiato con rivelatori per microonde molto sensibili. Raffreddati a 0.3K in un criostato, tali rivelatori permettono di misurare le minime distorsioni che la radiazione cosmica di fondo subisce quando attraversa un ammasso di galassie (effetto Sunyaev-Zel’dovich). Tra il telescopio e i rivelatori è posto un interferometro differenziale che permette di scomporre la radiazione e analizzarla più nel dettaglio, fornendo le chiavi per nuove scoperte nel settore. Lo strumento è posizionato su una navicella con tutti gli accessori necessari (elettronica di lettura, pannelli solari, batterie, sistema di telemetria e telecomandi, sistema di puntamento e di controllo d’assetto) e ha un peso complessivo di circa 1900 kg; per sollevarlo è stato necessario gonfiare di elio un pallone da ottocentomila metri cubi di volume (che in quota raggiunge le dimensioni di un campo di calcio). Per sfruttare a pieno le potenzialità dello strumento è necessario infatti che le osservazioni vengano effettuate ad una quota di circa 40 chilometri (dove il disturbo dell’atmosfera residua è minimo) per almeno dodici giorni. Questo spiega la scelta del luogo di lancio: alla latitudine delle Isole Svalbard, in questo periodo dell’anno, è presente una circolazione ad alta quota che consentirà al pallone e al suo carico di circumnavigare il Polo Nord e tornare al punto di partenza e forse proseguire ancora una volta verso la Groenlandia. Qui si spera di farlo atterrare e recuperare senza grossi danni lo strumento e i suoi accessori per un nuovo volo, stavolta attorno al Polo Sud. Olimpo è un programma dell’Agenzia Spaziale Italiana che da diversi anni è impegnata nel supporto alla realizzazione dell’esperimento e nell’organizzazione del suo volo. Il lancio è stato affidato alla Swedish Space Corporation, un’azienda di grande esperienza nel settore, ma che si cimenta per la prima volta in un lancio di un payload così pesante e da una latitudine così alta.

Lo strumento è stato ideato e realizzato dal gruppo di Cosmologia Sperimentale del Dipartimento di Fisica di “Sapienza” Università di Roma, sotto la responsabilità della professoressa Silvia Masi. Contributi importanti sono stati forniti dall’Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche per gli innovativi mosaici di rivelatori KIDS, dall’Istituto di Fisica Applicata ‘Nello Carrara’ sempre del CNR per il sistema di controllo d’assetto, dall’Istituto Nazionale di Geofisica e Vulcanologia per i sensori solari e dall’Università di Cardiff per i filtri. Importante anche il contributo della ditta LEN di Chiavari che ha realizzato il sistema di telemetria per l’invio dei telecomandi allo strumento e per la raccolta dei dati scientifici. Il lancio è avvenuto alle 09.07 CET dall’aeroporto di Longyearbyen (Isole Svalbard, Norvegia); dopo una salita nominale di circa 3 ore la navicella si trova alla quota di galleggiamento nominale di circa 37 km e viaggia alla velocità circa 45 km/ora in direzione NordEst, seguendo il vortice artico che al momento risulta stabile intorno al polo. “Con il lancio di Olimpo – commenta il presidente dell’Agenzia Spaziale Italiana Roberto Battiston- l’Asi riprende una tradizione di eccellenza nel settore dei palloni stratosferici che si era interrotta con la chiusura della base di Milo, non più adeguata per le necessità della sperimentazione odierna che richiede voli che durano alcune settimane”. “Olimpo – aggiunge Battiston – è il piu grande carico, circa due tonnellate, mai lanciato dalle isole Svalbard, uno strumento sofisticato per studiare i dettagli della radiazione elettromagnetica che proviene direttamente dal Big-Bang. Sfruttando i venti di alta quota che seguono un percorso circolare in senso orario, il pallone volerà attorno al polo nord per circa una settimana raccogliendo dati scientifici unici”. Grande soddisfazione nel team scientifico: “Sono stati lo sforzo e la dedizione continua di un team di scienziati e studenti che hanno consentito la realizzazione del più grande telescopio da pallone stratosferico mai lanciato”, è il commento a caldo di Silvia Masi PI di OLIMPO, del Dipartimento di Fisica dell’Università La Sapienza. “Grazie alla sua notevole apertura ed alla estrema sensibilità dei nuovi rivelatori ci aspettiamo importanti risultati sugli ammassi di galassie e sulle prime strutture che si sono formate nell’universo”, aggiunge. “È stata una lotta contro il tempo meteorologico avverso durante quasi tutta la finestra di lancio”, dichiara Domenico Spoto Project Manager ASI delle operazioni. “Il team delle operazioni ha saputo aspettare e cogliere con grande professionalità e tempestività il momento giusto per il lancio”. “Aspettiamo da anni questo momento”, chiosa Elisabetta Tommasi che ha seguito la realizzazione dello strumento per l’Unità Esplorazione e Osservazione dell’Universo di ASI”, le difficoltà sono state molte, dall’ottimizzazione dei nuovi rivelatori, alla realizzazione di un sistema di telemetria adeguato, all’ottenimento del permesso di sorvolo del territorio russo, ma nessuno si è arreso e ora aspettiamo i risultati scientifici per trarre i frutti dell’impegno profuso.

Sorgente di neutrini e fotoni

Sorgente di neutrini e fotoni

Per la prima volta, gli scienziati sono riusciti a individuare la possibile sorgente di un neutrino cosmico grazie all’associazione con una sorgente di raggi gamma, cioè fotoni di alta e altissima energia. Si tratta di un blazar, ossia una galassia attiva con un buco nero supermassiccio al centro, distante 4,5 miliardi di anni luce, in direzione della costellazione di Orione. A questo straordinario risultato, pubblicato su Science, i ricercatori sono arrivati combinando i dati del rivelatore di neutrini IceCube, che opera tra i ghiacci del Polo Sud, e altri 15 esperimenti per la rivelazione dei fotoni da terra e nello spazio. L’Istituto Nazionale di Astrofisica (INAF), l’Istituto Nazionale di Fisica Nucleare (INFN), l’Agenzia Spaziale Italiana (ASI) e varie Università italiane hanno dato contributi determinanti attraverso la partecipazione dei propri ricercatori a molti degli esperimenti e osservatori coinvolti nella scoperta.

Questa osservazione senza precedenti, frutto del lavoro “corale” dell’astronomia multimessaggero, ha fornito anche un solido indizio verso la spiegazione di uno dei maggiori misteri ancora irrisolti: l’origine dei raggi cosmici di altissima energia. I raggi cosmici sono, infatti, composti prevalentemente da protoni, particelle elettricamente cariche che sono quindi deviate dai campi magnetici che permeano lo spazio, impedendoci di risalire alla loro origine. Un aiuto per chiarire questo mistero, che dura da oltre 100 anni, arriva dai neutrini che sono prodotti proprio dai protoni di alta energia. Essendo particelle neutre e con massa piccolissima, i neutrini non vengono deviati dai campi magnetici e interagiscono pochissimo con la materia, dimostrandosi dunque perfetti messaggeri, in grado di portarci diritti alla loro origine.

Il presidente dell’Agenzia Spaziale Italiana, Roberto Battiston, sottolinea che si tratta di “un altro grande risultato dell’astronomia multimessaggero, oltre ai fotoni e alle onde gravitazionali, sorgenti estremamente energetiche nell’universo comunicano con noi attraverso neutrini di altissima energia. Grazie a questa nuova astronomia l’universo ogni giorno diventa più piccolo e meno sconosciuto, grazie ai sofisticati strumenti a terra e nello spazio sviluppata dai ricercatori di ASI, INAF e INFN”. Nichi D’Amico, presidente dell’INAF, osserva come, anche in questa scoperta, come nel caso dell’emissione di onde gravitazionali da parte del primo merger di due stelle di neutroni mai osservato, la potenza di fuoco di cui dispone l’INAF, a tutte le lunghezze d’onda e con strumentazione di avanguardia da terra e dallo spazio, si è dimostrata determinante per rispondere ad alcune delle domande fondamentali per la comprensione dell’universo”.

Era il 22 settembre 2017 quando il rivelatore di neutrini IceCube osservava un interessante neutrino, battezzato poi IC-170922A. Interessante perché la sua energia molto elevata, pari a 290 TeV (teraelettronvolt, mille miliardi di elettronvolt), indicava, con ogni probabilità, che era stato originato da un lontano oggetto celeste molto “attivo”. Poiché, in base alle teorie, la produzione di neutrini cosmici è sempre accompagnata da raggi gamma, quando IceCube ha visto IC-170922A ha subito lanciato un “allerta neutrino” a tutti i telescopi, disseminati nello spazio e sulla Terra, nella speranza che le loro osservazioni potessero aiutare a individuarne con precisione la sorgente. E così è stato.

Il satellite Fermi, realizzato dalla NASA e che conta su una importante partecipazione di ASI, INAF e INFN, osservando con il telescopio LAT i raggi gamma molto energetici provenienti dalla direzione del neutrino, ha trovato un’emissione coincidente con una sorgente di raggi gamma che era in stato “eccitato”. Era il blazar TXS 0506+056: un nucleo galattico attivo, cioè un buco nero supermassiccio al centro di una galassia che espelle un getto di materia relativistica, flussi di particelle e radiazioni energetiche a velocità vicine a quella della luce. Fermi-LAT ha diramato subito l’allerta tramite un ATel, un Telegramma Astronomico come viene chiamato, che ha consentito a tutti gli altri 14 esperimenti di puntare la sorgente. Il satellite italiano AGILE, realizzato da ASI con il contributo di INAF e INFN, ha quindi confermato l’informazione di Fermi-LAT con un altro Telegramma. Anche i telescopi MAGIC, realizzati e gestiti con il contributo importante di INAF e INFN, sull’isola di La Palma alle Canarie, che studiano i raggi gamma da terra attraverso la radiazione Cherenkov prodotta dall’interazione dei fotoni gamma provenienti dalle sorgenti celesti con l’atmosfera terrestre, hanno orientato i loro giganteschi specchi verso la sorgente riuscendo, con 12 ore di osservazione, a rivelarla osservandola a un’energia mille volte maggiore di quella di Fermi, fornendo così un altro importante pezzo per il completamento di questa scoperta.

Tra gli esperimenti che studiano i fotoni e che hanno rivelato la sorgente, ci sono anche altri tre satelliti con una significativa partecipazione italiana: Swift, della NASA, che ha un piccolo campo di vista ma una elevata capacità di ‘girarsi’ per ripuntare velocemente una sorgente improvvisamente ‘eccitata’, NuSTAR, sempre della NASA, che con i propri telescopi per i raggi X riesce a fare immagini dell’Universo ad alta energia, e INTEGRAL, dell’ESA, che non hanno visto la sorgente ma ha fornito un limite superiore alla sua intensità, permettendo agli scienziati di escludere che il neutrino fosse associato a un lampo di raggi gamma (GRB, Gamma Ray Burst). Grazie alla combinazione di tutte le diverse osservazioni è stato così possibile individuare proprio nel blazar TXS 0506+056, che si trova al cuore di una galassia a una distanza di 4,5 miliardi di anni luce dalla Terra, la probabile sorgente del neutrino. La distanza di tale galassia ospite è stata misurata da un team di ricercatori dell’INAF di Padova.

L’identificazione della sorgente dei raggi cosmici

Diversamente dal caso delle onde gravitazionali e del violento lampo gamma prodotti nella fusione di due stelle di neutroni, dove l’identificazione della sorgente si basava su una coincidenza temporale molto stretta, l’associazione fra il neutrino di IceCube e la sorgente TXS 0506+056, indicata dal telescopio LAT a bordo di Fermi, si fonda sulla coincidenza di posizione, all’interno di un decimo di grado, la cui affidabilità è stata calcolata basandosi sui dati Fermi-LAT. Per riuscire ad associare IC-170922A con la sorgente TXS 0506+056, il team Fermi-LAT ha dovuto riprodurre l’intero cielo gamma e studiarne la variabilità arrivando a valutare la probabilità di una coincidenza spaziale spuria a meno dell’1%. Un ulteriore indizio viene dall’osservazione da parte di MAGIC dei fotoni gamma a energie prossime a quelle del neutrino rivelato da IceCube, che rende questa associazione ancora più stringente e permette di avere un quadro più chiaro sull’origine di entrambe le emissioni. Nel blazar TXS 0506+056 il getto, alimentato dalla materia espulsa dal disco di accrescimento del buco nero nel quale era precipitata, è proprio la regione in cui le osservazioni di onde radio e di raggi gamma ci dicono che vengono accelerate particelle di alta energia. Adesso, che oltre ai raggi gamma abbiamo osservato anche un neutrino molto energetico, possiamo concludere che, oltre agli elettroni (e ai positroni), ci sono sicuramente anche protoni accelerati. Possiamo, inoltre, affermare che, per produrre il neutrino osservato, questi protoni sono sicuramente di energia estremamente elevata. Oltre a testimoniare in maniera chiara la presenza di protoni accelerati, il neutrino IC-170922A ci permette di risolvere, in parte, il mistero rappresentato dai raggi cosmici di energie estreme. Questo straordinario risultato della neonata astronomia multimessaggero conferma dunque la strettissima connessione che sussiste tra i diversi messaggeri cosmici.

Marte nelle brine antartiche

Marte nelle brine antartiche

Un team di ricerca italiano del quale fa parte anche l’Istituto per l’ambiente marino costiero del Consiglio nazionale delle ricerche (Cnr-Iamc) di Messina, oltre alle Università dell’Insubria, di Perugia, di Bolzano, di Trieste, di Venezia e della Tuscia, ha studiato in Antartide le brine, liquidi molto salati, in cui prosperano microorganismi che si sono adattati a vivere in crio-ecosistemi (sistemi estremi caratterizzati da basse temperature). Lo studio è stato condotto in un lago perennemente ghiacciato di Tarn Flat, nella Terra Vittoria, dove sono stati rinvenute due distinte comunità di funghi in due strati di brine, separati da un sottile strato di ghiaccio di 12 cm. I risultati ottenuti sono stati pubblicati sulla rivista Scientific Reports. “Quanto evidenziato rende possibile ipotizzare una prospettiva di vita anche in ambienti analoghi, quali le Lune ghiacciate del sistema solare o Marte. L’ipotesi che possa esistere una qualche forma di vita in ambienti extraterrestri è legata al fatto che vi è stata rilevata la possibile presenza di brine, come in Antartide”, spiega Maurizio Azzaro del Cnr-Iamc, coautore dello studio. “I crio-ecosistemi sono studiati per comprendere come queste realtà funzionino sulla Terra e quali potrebbero essere le fonti di energia in grado di consentire la vita in analoghe condizioni estreme. Ancora non sappiamo se nelle brine di altri pianeti del sistema solare ci siano microbi ma per studiare la possibile abitabilità di tali sistemi extraterrestri, in futuro, si potrebbero impiantare microbi terrestri”. Per studiare in maniera più approfondita le brine di alcuni laghi perennemente ghiacciati, un gruppo di ricercatori quest’anno partirà per il Polo Sud, nell’ambito del Programma nazionale di ricerche in Antartide (Pnra), finanziato dal Ministero dell’istruzione, dell’università e della ricerca e attuato dall’Enea per gli aspetti logistici e dal Cnr per la programmazione e il coordinamento scientifico. “La missione comincerà a novembre, durerà circa un mese e riguarderà i crio-ecosistemi (già studiati in due passate spedizioni scientifiche del Pnra, nel 2014 e nel 2017) che sappiamo ospitano brine in forma liquida. Inoltre, ci avvarremo del geo-radar per individuare altri laghi che possano racchiudere brine”, conclude Azzaro. “Bisognerà perforare i laghi ghiacciati con un carotatore, quindi le brine saranno prelevate sterilmente per essere trattate e analizzate nei laboratori della stazione scientifica italiana Mario Zucchelli. Cercheremo quindi di isolare e caratterizzare in laboratorio i ceppi microbici presenti, ricorrendo sia a metodi colturali sia a estrazione del Dna della componente procariotica (batteri e archeobatteri) ed eucariotica. L’obiettivo di questi studi è aumentare le conoscenze sulla vita microbica in ambienti estremi e capire come possa essere sostenuta nei crio-ambienti terrestri, per acquisire elementi utili a ipotizzare sistemi analoghi in altri mondi ghiacciati dell’Universo”.

 

Dawn vola basso su Cerere

Dawn vola basso su Cerere

Lo scorso 6 giugno, la sonda della Nasa Dawn ha raggiunto la sua orbita finale attorno al pianeta nano Cerere scattando migliaia di splendide immagini e raccogliendo altri preziosi dati. Dawn si è fermata è 35 chilometri di distanza dalla superficie segnando un record personale: è l’orbita più bassa dell’intera missione. I ricercatori hanno di nuovo posto l’attenzione sulla zona più brillante del pianeta nano Cerere, situata all’interno del cratere Occator, che presenta la più elevata concentrazione di carbonati mai registrata in ambienti al di fuori di quello terrestre. La natura di questi carbonati era stata scoperta dai dati raccolti con lo strumento VIR (Visual and Infrared Spectrometer), fornito dall’Agenzia Spaziale Italiana (ASI) e realizzato da Leonardo sotto la guida scientifica dell’Istituto Nazionale di Astrofisica (INAF).

“Le zone brillanti all’interno di questo cratere sono ricche di carbonati e sali. Questi materiali si formano tipicamente in presenza di acqua liquida, in ambienti che, sulla terra, vengono definiti idrotermali. Le nuove osservazioni permetteranno di valutare in dettaglio la composizione ed il meccanismo di formazione di tali materiali”, spiega Maria Cristina De Sanctis, principal investigator dello strumento VIR. Le ultime manovre orbitali hanno rivelato dettagli senza precedenti sui materiali presenti nella regione di Vinalia Faculae. Lo spettrometro a bordo di Dawn aveva precedentemente trovato depositi principalmente composti da carbonato di sodio, un materiale che si trova comunemente nei depositi di evaporite sulla Terra. La scorsa settimana Dawn ha avviato il suo motore a ioni, forse per l’ultima volta durante questa missione, per volare vicino a Cerealia Facula, l’ampio deposito di carbonato di sodio proprio al centro del cratere Occator. Si tratta di un cratere giovane dal punto di vista geologico, che si è formato circa 80 milioni di anni fa. Con una larghezza di 92 chilometri e una depressione centrale di circa 10 chilometri di diametro, il cratere mostra nella zona centrale un largo picco ricoperto di materiale altamente riflettente, ricco di carbonati, che presenta fratture concentriche e radiali sopra e attorno ad essa.

“L’analisi dei dati che lo spettrometro italiano VIR sta acquisendo in questi giorni – commenta Eleonora Ammannito project scientist dell’ASI per la missione Dawn – ci permetteranno di capire meglio i meccanismi evolutivi che hanno portato alla composizione della superficie misurata dagli strumenti a bordo della sonda Dawn. Particolare attenzione è stata dedicata alle Faculae presenti nel cratere Occator poiché i minerali identificati dallo spettrometro sembrano indicare la presenza di acqua liquida almeno in una fase iniziale”. Le informazioni contenute in queste immagini aiuteranno quindi i ricercatori a rispondere a domande chiave sull’origine delle faculae, i depositi di carbonati più abbondanti mai osservati al di fuori della Terra. In particolare, gli scienziati si sono interrogati su come questo materiale sia stato esposto; le opzioni sono due: una riserva superficiale di acqua ricca di minerali, o una fonte più profonda di acqua liquida arricchita di sali che risale verso l’alto attraverso le fratture. Inoltre, le osservazioni a bassa quota che verranno ottenute con gli altri strumenti di Dawn, tra cui rivelatore di raggi gamma e neutroni (il Gamma Ray and Neutron Detector – GRaND), riveleranno la composizione di Cerere su scala più piccola e precisa, gettando nuova luce sull’origine dei materiali trovati sulla superficie di questo pianeta nano.

(Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA)