Seleziona una pagina
Nuova era per l’Universo

Nuova era per l’Universo

Per la prima volta nella storia dell’osservazione dell’universo, è stata rivelata un’onda gravitazionale prodotta dalla fusione di due stelle di neutroni e captata, dalle onde radio fino ai raggi gamma, la radiazione elettromagnetica associata alla poderosa esplosione avvenuta durante il fenomeno. È la prima volta che un evento cosmico viene osservato sia nelle onde gravitazionali che elettromagnetiche, avviando così l’era dell’astronomia multimessaggero, che estende notevolmente il nostro modo di “vedere” e “ascoltare” il cosmo. La scoperta è stata realizzata grazie alla sinergia tra i due Laser Interferometer Gravitational-Wave Observatory (l’Osservatorio LIGO) negli Stati Uniti insieme al rivelatore VIRGO, in Europa, abbinata alle osservazioni e alle indagini nella banda elettromagnetica ottenute da 70 telescopi a terra, tra cui REM, VST, VLT, e osservatori spaziali, come Fermi e Integral, Swift, Chandra, Hubble, che hanno permesso di caratterizzare in modo chiaro l’origine dell’onda. L’Italia è tra i protagonisti a livello mondiale di questo straordinario risultato con l’Istituto Nazionale di Fisica Nucleare (INFN), che ha fondato il rivelatore per onde gravitazionali VIRGO, l’Istituto Nazionale di Astrofisica (INAF), che ha “fotografato” e quindi riconosciuto e caratterizzato, tra i primi al mondo con strumenti da terra e dallo spazio, la sorgente denominata AT2017gfo e l’Agenzia Spaziale Italiana che partecipa con missioni dedicate all’astrofisica delle alte energie.

L’evento è avvenuto a 130 milioni di anni luce da noi, alla periferia della galassia NGC4993, in direzione della costellazione dell’Idra. Le due stelle di neutroni, a conclusione del loro inesorabile e sempre più frenetico processo di avvicinamento, hanno spiraleggiato una intorno all’altra, emettendo onde gravitazionali che sono state osservate per circa 100 secondi. Quando si sono scontrate, hanno emesso un lampo di luce sotto forma di raggi gamma, osservato nello spazio circa due secondi dopo l’emissione delle onde gravitazionali dal satellite Fermi della Nasa e quindi confermato dal satellite Integral dell’ESA. Nei giorni e nelle settimane successive allo scontro cosmico è stata individuata l’emissione di onde elettromagnetiche in altre lunghezze d’onda, tra cui raggi X, ultravioletti, luce visibile, infrarossi e onde radio. I ricercatori italiani dell’INAF hanno potuto raccogliere e analizzare, grazie al telescopio REM (Rapid Eye Mount) e quelli dell’ESO VST (VLT survey telescope) e VLT una preziosissima messe di informazioni su questo evento. Decisivo è stato anche il contributo fornito dai dati provenienti dallo spazio grazie alle missioni Integral e Swift, che vedono la partecipazione dell’Agenzia Spaziale italiana, CHANDRA (Nasa) e Hubble (NASA-ESA). Gli astronomi hanno avuto un’opportunità senza precedenti per sondare con tutti i migliori strumenti per l’osservazione dell’universo oggi in funzione la collisione di due stelle di neutroni. Le osservazioni fatte dal telescopio Very Large Telescope (VLT) e guidate da ricercatori italiani rivelano evidenze della sintesi di elementi pesanti scaturiti in seguito all’immane esplosione, come l’oro e il platino, e risolvendo così il mistero, che durava da decine di anni, sull’origine di quasi la metà di tutti gli elementi più pesanti del ferro. Alle stesse conclusioni portano i dati raccolti dal telescopio spaziale Hubble della NASA. Gli scienziati hanno inoltre avuto la prima conferma diretta che le collisioni tra stelle di neutroni danno origine ai famosi “lampi di raggi gamma” (o Gamma-Ray Burst, GRB) di breve durata. I risultati di LIGO-VIRGO sono pubblicati nella rivista Physical Review Letters (edizione del 16 ottobre 2017), mentre molti altri articoli sia delle collaborazioni LIGO e VIRGO che della comunità astronomica legata ai telescopi spaziali, come Integral, Fermi, Swift e Agile sono stati presentati o accettati per la pubblicazione in varie riviste, e vedono protagonisti moltissimi ricercatori italiani, alcuni dei quali come primi autori. Due articoli su Nature hanno come primi autori scienziati dell’INAF.

UN GIOCO DI SQUADRA

Il segnale gravitazionale, denominato GW170817, è stato registrato il 17 agosto alle 14:41 ora italiana. La rivelazione è stata fatta dai due rivelatori gemelli LIGO, situati a Hanford, nello stato di Washington e Livingston, in Louisiana, e le informazioni fornite dal terzo rivelatore, VIRGO, situato in Italia, vicino a Pisa, hanno permesso la precisa localizzazione dell’evento cosmico. Sempre il 17 agosto, quasi in contemporanea, il Gamma-ray Burst Monitor del telescopio spaziale Fermi della NASA ha rivelato un lampo di raggi gamma di breve durata (GRB, Gamma Ray Burst), osservazione poi confermata dal satellite Integral. Il software di analisi LIGO-VIRGO ha messo insieme i due segnali, da cui si è dedotto che era altamente improbabile che si trattasse di una coincidenza casuale. Un’ulteriore analisi automatica ha messo in evidenza la presenza di un segnale gravitazionale coincidente nel secondo rivelatore LIGO. L’onda gravitazionale è stata captata prima dai rivelatori LIGO negli Stati Uniti, e poi da VIRGO in Italia, che ha giocato un ruolo fondamentale in questo risultato. A causa del suo orientamento rispetto alla sorgente al momento della rivelazione, VIRGO ha registrato un segnale che, combinato con le dimensioni e la tempistica del segnale nei rivelatori LIGO, ha consentito agli scienziati di triangolare con precisione la posizione nel cielo della sorgente. Dopo aver eseguito un approfondito controllo per assicurarsi che i segnali non fossero un artefatto degli strumenti di rivelazione, gli scienziati hanno concluso che l’onda gravitazionale veniva da un’area relativamente piccola, solo 28 gradi quadrati, nel cielo dell’emisfero meridionale. La rapida rivelazione dell’onda gravitazionale da parte della collaborazione LIGO-VIRGO, associata con il picco di raggi gamma registrati da Fermi, ha permesso il lancio del programma di follow-up dei telescopi in tutto il mondo. Il record di precisione nella localizzazione ha dunque permesso agli astronomi di eseguire in tempi brevissimi osservazioni di follow-up che hanno portato a una inedita ricchezza di eccezionali risultati. Grazie all’inedita precisione nella localizzazione dell’evento gravitazionale, decine di osservatori in tutto il mondo sono stati in grado, ore più tardi, di iniziare a scandagliare la regione del cielo da cui si pensava che il segnale provenisse. Per primi sono stati i telescopi ottici a individuare un nuovo punto di luce, simile a una nuova stella. Anche l’Italia ha risposto con i telescopi e il personale dell’INAF, già pronti e organizzati a seguire tempestivamente gli allerta di LIGO e VIRGO, ed è così riuscita tra i primi al mondo a raccogliere le immagini della sorgente. In seguito, circa 70 telescopi a terra e nello spazio hanno osservato l’evento alle varie lunghezze d’onda. Dai dati, frutto di questo straordinario lavoro di squadra tra tutti gli osservatori che hanno potuto rivelare il segnale, emerge un’immagine generale che conferma ulteriormente che la sorgente delle onde gravitazionali è stato un evento di fusione di una coppia di stelle di neutroni.

UN EVENTO STELLARE ALL’ORIGINA DEI FAMOSI LAMPI DI RAGGI GAMMA

I dati di LIGO-VIRGO indicavano che due oggetti astrofisici situati alla distanza oltre 130 milioni di anni luce dalla Terra avevano orbitato l’uno intorno all’altro per poi fondersi in un unico corpo, e suggerivano che gli oggetti non fossero massicci come le coppie di buchi neri individuate da LIGO e VIRGO in precedenti osservazioni. Le masse degli oggetti spiraleggianti sono state, infatti, stimate da 1,1 a 1,6 volte la massa del Sole, quindi nell’intervallo di massa previsto per le stelle di neutroni. Le stelle di neutroni sono le stelle più piccole e più dense esistenti, e si formano quando stelle di grandi dimensioni esplodono in supernovae. Una stella di neutroni ha un diametro di circa 20 chilometri, ed è così densa che un cucchiaino della materia di cui è composta pesa circa un miliardo di tonnellate. Inoltre, mentre i sistemi binari di buchi neri producono segnali (“chirp”) che durano una frazione di secondo nella banda sensibile di LIGO e VIRGO, il chirp del 17 agosto è durato circa 100 secondi ed è stato visto attraverso l’intero intervallo di frequenza di LIGO – simile a quello dei comuni strumenti musicali. Gli scienziati hanno così potuto identificare la sorgente del segnale in oggetti che erano molto meno massicci dei buchi neri finora osservati.

Secondo le ipotesi teoriche, quando le stelle di neutroni si scontrano, dovrebbero produrre onde gravitazionali e raggi gamma, insieme a potenti getti di luce attraverso tutto lo spettro elettromagnetico. Le nuove osservazioni confermano così che almeno alcuni dei GRB sono generati dalla fusione di stelle di neutroni, fatto che finora era stato solo teorizzato ma mai provato sperimentalmente. Ma, mentre un mistero sembra essere risolto, nuovi misteri sono emersi. L’esplosione di raggi gamma osservata è stata una delle più vicine alla Terra viste finora, ma è sorprendentemente debole per la sua distanza. Sappiamo che l’emissione dei lampi gamma viene incanalata lungo due “getti” (come due coni che si dipartono in direzioni opposte). Questo significa che noi possiamo vedere bene solo i lampi gamma il cui getto luminoso è orientato verso la Terra (circa uno ogni 100-200 eventi, secondo le più recenti stime). Il lampo gamma associato all’evento gravitazionale del 17 agosto potrebbe essere debole perché visto “di sbieco”. Le osservazioni X e radio sembrano confermare questa ipotesi affascinante. Gli scienziati stanno già cominciando a proporre nuovi modelli per spiegare questo fatto e nuove, interessanti osservazioni sono attese nei prossimi anni.

La kilonova e la sintesi degli elementi pesanti Circa 130 milioni di anni fa, le due stelle di neutroni, separate solo da circa 300 chilometri, erano nei loro ultimi momenti di orbita l’una attorno all’altra, accumulando velocità mano a mano che la distanza tra loro diminuiva. Mentre le stelle ruotavano sempre più veloci e più vicine, stiravano e distorcevano lo spaziotempo circostante, emettendo una grande quantità energia sotto forma di onde gravitazionali, prima di fondersi l’una nell’altra. Al momento della collisione, gran parte della massa delle due stelle di neutroni si è fusa in un oggetto densissimo, emettendo un lampo di raggi gamma. Le misure iniziali di raggi gamma, combinate con la rivelazione dell’onda gravitazionale, forniscono anche la conferma della teoria della relatività generale di Albert Einstein, secondo cui le onde gravitazionali viaggiano alla velocità della luce. Ciò che segue la fusione di due stelle di neutroni è una “kilonova”, un fenomeno durante il quale il materiale rilasciato dalla collisione delle stelle di neutroni viene lanciato violentemente lontano nello spazio dando origine a processi di nucleosintesi di elementi pesanti. Le nuove osservazioni basate sulla luce mostrano che in queste collisioni vengono creati elementi pesanti, come il piombo e l’oro, che vengono così successivamente distribuiti in tutto l’universo. Nelle settimane e nei prossimi mesi, i telescopi di tutto il mondo continueranno a osservare l’evoluzione della collisione delle stelle di neutroni e a raccogliere ulteriori prove sulle varie fasi della loro fusione, la sua interazione con l’ambiente circostante e i processi che producono gli elementi più pesanti dell’universo. La sfida della astrofisica di eventi multimessaggeri è appena stata lanciata e gli scienziati italiani sono pronti a raccoglierla.

 

Haumea il transnettuniano

Haumea il transnettuniano

Haumea, uno dei quattro pianeti cosiddetti ‘nani’ che si trovano nelle regioni più esterne e remote del sistema Solare, oltre l’orbita di Nettuno, possiede un anello di polveri che lo circonda. A scoprire questa sorprendente proprietà è stato un team guidato da astronomi dell’Instituto de Astrofísica de Andalucía, a cui hanno partecipato anche ricercatori dell’Istituto Nazionale di Astrofisica (INAF) grazie a una campagna osservativa che ha sfruttato le osservazioni di numerosi telescopi da tutto il mondo. È la prima volta che viene individuate una struttura ad anello attorno a un oggetto transnettuniano, mentre sono ben noti gli anelli attorno ai pianeti giganti del Sistema solare e anche, più recentemente, attorno a due asteroidi della categoria dei Centauri. I risultati della ricerca sono stati pubblicati sulla rivista Nature.

Poco sappiamo ad oggi della storia di formazione ed evoluzione, oltre alle caratteristiche fisiche, degli oggetti transettuniani dei quali insieme ad Haumea fanno parte anche Plutone, Eris e Makemake. Proprio Haumea è ad oggi forse il meno conosciuto tra tutti. Dalla sua controversa scoperta, avvenuta in modo indipendente nel 2004 da parte di due team di ricerca, uno spagnolo e l’altro statunitense, sappiamo che questo oggetto possiede una peculiare forma allungata, oltre che due minuscole lune, battezzate Hi’iaka e Namaka. Molte sono le difficoltà che si incontrano nel cercare di studiare e analizzare gli oggetti transnettuniani, prima fra tutte l’enorme distanza, che impedisce di effettuare misure dirette sulla forma e le dimensioni di Haumea. Anche nei momenti più favorevoli essa si trova a ben 34 unità astronomiche dalla Terra, ovvero 5,1 miliardi di chilometri. Degli eventi astronomici fortuiti, però, permettono di ottenere queste informazioni in modo indiretto ma accurato. Si tratta delle cosiddette occultazioni stellari, durante le quali il corpo, nel corso del suo moto orbitale, si ritrova ad eclissare una stella situata sullo sfondo per un intervallo di tempo di pochi minuti o anche meno. La durata di tali eclissi, misurata da osservatori situati in diversi luoghi sulla Terra, varia per effetto prospettico e il confronto delle misure permette quindi di ricostruire l’esatto profilo del corpo celeste e le sue dimensioni, come se ne osservassimo per così dire la silhouette. «L’efficacia straordinaria di queste osservazioni viene dalla precisione con cui si conosce il momento dell’occultazione. Il tempo dell’occultazione viene calcolato con i dati sempre più’ precisi che arrivano dal satellite Gaia e questo permette di mobilitare le risorse osservative per il breve tempo del fenomeno con precisione assoluta» dice Giuseppe Leto, dell’INAF di Catania, nel team che ha realizzato lo studio. Ed è proprio grazie a questo metodo che lo scorso 21 gennaio, quando ha avuto un’occultazione stellare di Haumea particolarmente favorevole e ben visibile dall’Europa che il “papà” spagnolo di Haumea, José Luis Ortiz, ha coordinato in modo efficiente una rete di osservatori, sia professionali che amatoriali, tra cui il telescopio Copernico da 1,82 metri dell’INAF ad Asiago.

L’elevata qualità dei dati ottenuti da Asiago, assieme a quelli di altri undici telescopi, hanno permesso in primo luogo di stabilire che Haumea ha la forma di un cosiddetto ‘elissoide a tre assi’, una specie di gigantesco pallone da rugby, e che è molto più grande ed allungato rispetto a quanto ritenuto in precedenza. Essendo poi nota la sua massa, grazie alla presenza delle due lune, si è potuta fare una stima accurata anche della densità del pianeta nano e dell’albedo della sua superficie, ovvero del suo potere riflettente. Entrambi I valori si sono rivelati ben inferiori alle precedenti stime e molto più simili ai corrispondenti valori di Plutone. La repentina diminuzione della luminosità all’inizio e alla fine dell’occultazione ha permesso anche di stabilire un limite alla presenza di un’atmosfera che, seppur presente, è estremamente più tenue di quella di Plutone, misurata dalla sonda New Horizons. Sempre Giuseppe Leto aggiunge «La straordinarietà di questo risultato è che con semplici curve fotometriche ottenute contemporaneamente da 12 siti posti in diverse posizioni geografiche, effettuate durante un’occultazione, si sono potuti determinare con precisione l’esistenza di un anello, di cui non si aveva conoscenza prima, e migliorare le informazioni sulle proprietà’ dinamiche e geometriche di Haumea». Il risultato più interessante dello studio è stato infatti qualcosa di assolutamente inatteso. Più di un osservatorio, tra i quali Asiago, ha mostrato un’anomalia nei minuti che precedevano e seguivano l’occultazione: come se un altro corpo, non perfettamente opaco, avesse occultato la stella subito prima e subito dopo l’evento principale. Anche in questo caso il confronto tra i diversi dati ha permesso di risalire alla causa: Haumea è circondata da un ‘anello’ denso e sottile che orbita a circa 2300 chilometri dalla sua superficie e spesso solo 70 chilometri. «È una scoperta sensazionale dal punto di vista scientifico, perché mette in luce caratteristiche di questi oggetti – come la forma, o la presenza di anelli – che costituiscono tasselli di un puzzle nella storia evolutiva del nostro Sistema Solare» dice Valerio Nascimbeni, ricercatore dell’Università di Padova e associato INAF, tra gli autori dello studio «ma è anche un risultato importante perché dimostra come, in un’epoca di “big science”, reti di piccoli telescopi coordinati in modo efficiente siano ancora in grado di competere e complementare il lavoro svolto da osservatori più grandi».

 

JWST: nuovo occhi sul cosmo

JWST: nuovo occhi sul cosmo

Slitta da ottobre 2018 alla primavera 2019 il lancio del James Webb Space Telescope, destinato a raccogliere l’eredità dello Hubble Space Telescope e superarne i confini di osservazione del cosmo profondo, con la prospettiva di rivelare le prima fasi di vita dell’universo fino a 13,7 miliardi di anni fa. Il ritardo del lancio è dovuto all’allungamento dei tempi di integrazione dei delicati componenti del nuovo, potente strumento che scandaglierà l’universo all’infrarosso. Non diminuiscono, tuttavia, né le aspettative della comunità scientifica e astrofisica, né l’interesse del pubblico, come ha dimostrato la conferenza ospitata dalla XV edizione di BergamoScienza e dedicata ai “nuovi occhi sull’universo del James Webb Space Telescope”, che ha visto relatore Matthew Greenhouse del NASA Goddard Space Flight Center e project scientist del progetto, a cui lavora dal 1997. Il programma di esplorazione cosmica assegnato al nuovo potente telescopio, frutto della collaborazione della NASA con le agenzie spaziali europea e canadese, promette di svelare le galassie primordiali, fornire risposte sulla natura dei buchi neri, ma ancora di più individuare la presenza di molecole biologiche riflesse dallo spettro di uno dei pianeti extrasolari, rocciosi e simili per dimensioni alla Terra e che si trovino nella cosiddetta fascia di abitabilità, arrivando a indicarci o a supporre la presenza di forme organiche.

A differenza di Hubble, telescopio spaziale ottico e primo osservatorio astronomico posto al di fuori dell’atmosfera terrestre, in orbita da aprile 1990, il Jwst è un telescopio a infrarossi dotato di uno specchio enorme, del diametro di sei metri e mezzo (quello di Hubble è 2,4), formato da 18 specchi ricoperti da un sottilissimo strato d’oro. Sarà la gigantesca superficie riflettente a permettergli di arrivare così lontano nel tempo, a poche centinaia di milioni di anni dopo il Big Bang, fino a osservare come si sono formate le prime galassie. Rispetto al precedessore, il nuovo osservatorio sarà posizionato nel punto di equilibrio langragiano L2, distante 1,5 milioni di chilometri dalla Terra. Un avamposto privilegiato, ma che non potrà essere oggetto di manutenzione o aggiornamento strumentale, com’è avvenuto per Hubble, raggiunto per quattro volte in orbita terrestre da altrettante missioni dello Space Shuttle.

Per questo motivo tutti i sistemi operativi e la componente strumentale dovranno funzionare alla perfezione e con la massima accuratezza, sia nei test pre-lancio nella camera a freddo, con la temperatura portata fino a -262 gradi centigradi (a 11 dallo zero assoluto), sia quando inizierà la sua missione, indicativamente nell’autunno 2019. Il primo ciclo conta qualcosa come 8.700 ore per un totale di 2100 osservazioni, che equivale a un anno intero. Il JWST, dedicato a James Webb che è stato amministratore della NASA dal 1961 al 1968, ha una massa di 6,5 tonnellate, sarà messo in orbita dal razzo vettore europeo Ariane 5, che ha dalla sua la più elevata affidabilità nel panorama dei lanciatori. La partenza avverrà dalla base europea di Kourou in Guyana Francese.

Onde gravitazionali da Nobel

Onde gravitazionali da Nobel

La scoperta delle onde gravitazionali, previste un secolo fa dalla teoria della relatività di Albert Einstein, ha conquistato il Nobel per la Fisica 2017, assegnato a Kip Thorne, Ray Weiss e Barry Barish, ma con chiaro riferimento alla collaborazione internazionale tra il rivelatore americano Ligo, che per primo ha registrato il segnale delle vibrazioni spazio-temporali nel settembre 2015, e l’europeo Vigo situato a Cascina pisana, che ha fornito successivamente il suo contributo. Va ricordato che il Nobel per la Fisica può essere tradizionalmente assegnato solo a singoli ricercatori e non a organizzazione di ricerca, ma nella motivazione si legge il chiaro riferimento alle equipe di Ligo e Virgo, dove emerge il ruolo italiano. E’ per questo che il Presidente dell’Istituto Nazionale di Astrofisica, Nichi D’Amico, parla di grande e meritato riconoscimento per la fisica moderna, che apre nuovi orizzonti di indagine dell’Universo, sottolineando che i telescopi del nostro Istituto Nazionale di Astrofisica sono già all’opera per produrre le prime “fotografie” delle sorgenti di onde gravitazionali, a tutte le lunghezze d’onda, da terra e dallo spazio.

?

D’altronde, Virgo ha un padre italiano, Adalberto Giazotto, al quale riconosce il merito Federico Ferrini, direttore dell’Osservatorio Gravitazionale Europeo (Ego). Le onde gravitazionali, che possono essere assimilate a quelle generate da un sasso che cade in uno stagno, sono provocate dai fenomeni più violenti dell’universo, come collisioni di buchi neri, esplosioni di supernovae o il Big Bang che ha dato origine all’universo. La scoperta delle onde gravitazionali è stata anche la conferma definitiva della teoria della relatività generale. Viste per la prima volta nel settembre 2015, la loro scoperta è stata annunciata l’11 febbraio 2016.

Raggi cosmici di alta energia

Raggi cosmici di alta energia

Arriva dagli scienziati della collaborazione Pierre Auger, di cui fanno parte anche ricercatori dell’Istituto Nazionale di Astrofisica (INAF), la prima evidenza sperimentale che i raggi cosmici di alta energia provengono da zone esterne alla nostra galassia. I raggi cosmici sono un flusso continuo di particelle, in gran parte protoni e nuclei di atomi che investono la Terra e possiedono energie diverse. Da decenni i ricercatori hanno speculato sull’origine di quelli più energetici e se in particolare provenissero o meno dalla nostra galassia. Oggi l’enigma è stato svelato utilizzando particelle cosmiche di energia media di 2 Joule, ovvero un milione di volte superiore a quella dei protoni accelerati nel Large Hadron Collider del CERN, registrate con il più grande osservatorio di raggi cosmici mai costruito dall’uomo, l’Osservatorio Pierre Auger in Argentina. Gli oltre 400 scienziati provenienti da 18 Paesi che costituiscono la collaborazione alla quale per l’Italia, insieme all’INAF, partecipa l’Istituto Nazionale di Fisica Nucleare (INFN) e alcune Università, hanno scoperto che, a queste energie, i raggi cosmici non arrivano in maniera uniforme da tutte le direzioni del cielo: la loro frequenza di arrivo è di circa il 6% maggiore da un lato del cielo rispetto alla direzione opposta, con l’eccesso che si trova a circa 120° rispetto al centro della nostra galassia. “Siamo ora molto più vicini a risolvere il mistero dell’origine di queste straordinarie particelle, una questione di grande interesse per gli astrofisici” dice Karl-Heinz Kampert, professore dell’Università di Wuppertal e portavoce della Collaborazione Pierre Auger. “La nostra osservazione fornisce prove convincenti che i siti di accelerazione si trovano fuori dalla Via Lattea”.

I raggi cosmici di energia superiore a 2 Joule sono molto difficili da registrare per il fatto che la loro frequenza di arrivo in cima all’atmosfera terrestre è di circa un evento per chilometro quadrato ogni anno. In maniera equivalente si potrebbe dire che un raggio cosmico di queste energie colpisce la superficie di un campo di calcio una volta ogni 120 anni. Tali particelle rare sono rilevabili perché, interagendo con i nuclei degli elementi che costituiscono l’atmosfera, creano sciami di altre particelle: elettroni, fotoni e muoni. Questi sciami si espandono, attraversando l’atmosfera alla velocità della luce in una struttura a disco, simile a un piatto del diametro di diversi chilometri e raggiungono il suolo. Le particelle dello sciame vengono rilevate dall’Osservatorio Auger attraverso la luce Cherenkov che esse producono in alcuni dei suoi 1600 rivelatori, ognuno dei quali contiene 12 tonnellate d’acqua. Questi rivelatori sono distribuiti su una superficie che si estende per un’area di 3000 chilometri quadrati nell’Argentina occidentale, comparabile, come dimensione, alla nostra Valle D’Aosta. I tempi di arrivo delle particelle ai rivelatori, misurati con il GPS, vengono utilizzati per individuare le direzioni di arrivo degli eventi con una precisione di circa un grado. Studiando la distribuzione delle direzioni di arrivo di oltre 30 mila particelle cosmiche, la collaborazione Auger ha scoperto un’anisotropia, ovvero una disomogeneità nelle loro direzioni d’arrivo, con un grado di accuratezza tale per cui la probabilità che tale anisotropia sia un evento casuale è di circa due in dieci milioni. L’eccesso nel flusso dei raggi cosmici riscontrato sembra provenire da una regione di spazio dove è presente un numero di galassie relativamente elevato. “Questo risultato è un passo fondamentale verso la scoperta delle sorgenti delle particelle più energetiche. Nella prossima fase di acquisizione, sarà possibile effettuare uno studio mirato delle anisotropie basato su una selezione di massa dei raggi cosmici primari, aprendo la strada all’astronomia delle particelle cariche” commenta Antonella Castellina, responsabile per l’INAF di Torino all’interno dell’Osservatorio Pierre Auger. Anche se questa scoperta indica chiaramente un’origine extragalattica di queste particelle, le loro sorgenti effettive devono ancora essere individuate. A queste energie, infatti, le particelle vengono deviate di alcune decine di gradi dal campo magnetico galattico rendendo impossibile l’identificazione delle loro sorgenti, ma permettendo di individuare solo la regione di provenienza. Tale regione, però, non può essere associata a sorgenti nel piano o nel centro della nostra galassia per qualsiasi configurazione realistica del campo magnetico galattico. Esistono, tuttavia, raggi cosmici di energia ancora più elevata rispetto alla maggior parte di quelli utilizzati in questo studio, alcuni anche con l’energia cinetica pari a quella posseduta da una palla da tennis colpita da un giocatore professionista. Poiché le deviazioni di tali particelle dovrebbero essere più piccole, le direzioni di arrivo dovrebbero puntare con minore incertezza verso i loro luoghi di produzione. Questi raggi cosmici sono ancora più rari e ulteriori studi sono in corso per cercare di individuare quali siano gli oggetti extragalattici che fungono da giganteschi acceleratori cosmici. La conoscenza della natura delle particelle aiuterà questa ricerca e a questo obbiettivo è mirato l’aggiornamento dell’Osservatorio Pierre Auger attualmente in fase di realizzazione.

L’Italia nella collaborazione Pierre Auger

Circa il 15 % degli scienziati che costituiscono la collaborazione Auger sono italiani e la loro partecipazione alle attività di ricerca dell’Osservatorio è possibile grazie al contributo dell’Istituto Nazionale di Fisica Nucleare, dell’Istituto Nazionale di Astrofisica, e delle Università di L’Aquila, Catania, Milano, “Federico II” di Napoli, Roma Tor Vergata, Salento, Torino, del Politecnico di Milano e del Gran Sasso Science Institute. L’Istituto Nazionale di Fisica Nucleare attraverso le sezioni di Catania, Lecce, Napoli, Milano, Roma Tor Vergata, Torino e i Laboratori Nazionali del Gran Sasso ha contribuito alla realizzazione dell’Osservatorio Pierre Auger e partecipa attivamente al suo programma di aggiornamento.

 

Cassini abbraccia Saturno

Cassini abbraccia Saturno

La sonda Cassini ha recitato alla perfezione il suo gran finale, tuffandosi nell’atmosfera di Saturno ponendo termine a una missione iniziata il 15 ottobre 1997 e durata 19 anni e 11 mesi. Un ventennio di studi, esplorazione e raccolta di dati e immagini, che ha contribuito ad approfondire la conoscenza del sistema del pianeta degli anelli e proseguirà a rilasciare nuove informazioni grazie alla elaborazione di quanto immagazzinato e trasmesso al team di scienziati e astrofisici. Una missione straordinaria, conclusasi alle ore 13, 55 minuti e 46 secondi (ora italiana) del 15 settembre 2017 quando Cassini ha cessato di inviare il suo segnale verso la Terra. Orbite sempre più radenti hanno portato la sonda a precipitare nell’atmosfera di Saturno, lasciando una lunga scia luminosa simile a una stella cadente. “La missione che si conclude oggi parla molto italiano: sono passati oltre 300 anni dalla scoperta dei satelliti di Saturno da parte di Giovanni Domenico Cassini e oggi una sonda che porta il suo nome si tuffa nell’atmosfera di questo remoto pianeta, dopo averceli fatti conoscere da vicino” ha commentato il presidente dell’INAF Nichi D’Amico. “L’INAF partecipa con quattro membri del Team Scientifico dello spettrometro VIMS e 3 Participating Scientists, tutti dell’Istituto di Astrofisica e Planetologia Spaziali di Roma dell’INAF, che hanno prodotto circa il 20% delle pubblicazioni scientifiche generate dai dati dello strumento, uno dei principali a bordo della sonda. Una grande soddisfazione per il nostro Istituto, viste le sbalorditive scoperte che è stato possibile fare nel corso di questi 10 anni grazie al contributo di VIMS: dimostrare che Phoebe si è formato lontano dal Sole e che Saturno lo ha catturato nelle fasi primordiali del Sistema Solare, dimostrare che i laghi di Titano sono formati da idrocarburi, supporre la presenza di un oceano liquido sotto la crosta ghiacciata di Encelado. Chissà quali altre sorprese ci attendono in questo ultimo tuffo che ci porta un passo più avanti nella comprensione del nostro Universo. Ed è ulteriore motivo di soddisfazione assistere a questo evento con il nostro grande radiotelescopio della Sardegna, appositamente equipaggiato dall’ASI”. Gli fa eco Enrico Flamini, direttore scientifico dell’ASI, al fianco di Battiston al JPL, il quale sottolinea come l’addio a Cassini rappresenti un momento di distacco da un oggetto di straordinario valore scientifico e tecnologico, consapevoli però che il bagaglio di dati fornito durante la missione continuerà ad arricchire il sapere su Saturno e più in generale sul sistema solare. Gli strumenti di Cassini, tra cui gli italiani NIMS e VIMS, hanno funzionato fino a pochi secondi prima che Cassini si dissolvesse nell’atmosfera di Saturno, inviando sulla Terra le immagini conclusive dettagliate e ravvicinate.

“La missione appena conclusasi parla molto italiano: sono passati oltre 300 anni dalla scoperta dei satelliti di Saturno da parte di Giovanni Domenico Cassini e oggi una sonda che porta il suo nome si tuffa nell’atmosfera di questo remoto pianeta, dopo averceli fatti conoscere da vicino” ha commentato il presidente dell’INAF Nichi D’Amico. “L’INAF partecipa con quattro membri del Team Scientifico dello spettrometro VIMS e 3 Participating Scientists, tutti dell’Istituto di Astrofisica e Planetologia Spaziali di Roma dell’INAF, che hanno prodotto circa il 20% delle pubblicazioni scientifiche generate dai dati dello strumento, uno dei principali a bordo della sonda. Una grande soddisfazione per il nostro Istituto, viste le sbalorditive scoperte che è stato possibile fare nel corso di questi 10 anni grazie al contributo di VIMS: dimostrare che Phoebe si è formato lontano dal Sole e che Saturno lo ha catturato nelle fasi primordiali del Sistema Solare, dimostrare che i laghi di Titano sono formati da idrocarburi, supporre la presenza di un oceano liquido sotto la crosta ghiacciata di Encelado. Chissà quali altre sorprese ci attendono in questo ultimo tuffo che ci porta un passo più avanti nella comprensione del nostro Universo. Ed è ulteriore motivo di soddisfazione assistere a questo evento con il nostro grande radiotelescopio della Sardegna, appositamente equipaggiato dall’ASI”.

Il capitolo operativo della sonda Cassini si conclude dopo sette anni di viaggio e tredici di attività, grazie all’estensione di nove anni oltre la vita operativa inizialmente prevista. La sonda ha inviato a terra, attraverso la sua grande antenna di 4 metri di diametro progettata e costruita in Italia dalla Thales Alenia Space, una mole di informazioni che terrà occupati gli scienziati per i prossimi anni per scoprire i dati mancanti sulla formazione di Saturno e sui suoi anelli. L’antenna è stata anche una parte integrante di due strumenti che hanno visto l’ASI e l’università italiana protagonisti, il Radar e la Radioscienza. La bellezza delle immagini ravvicinate degli anelli che circondano Saturno o delle loro ombre proiettate sul Pianeta, è solo una parte degli eccezionali risultati della missione che ci ha svelato la superficie di un mondo prima ignoto. Titano, con i suoi mari di idrocarburi o Encelado, che si credeva fosse un piccolo satellite ghiacciato e poco importante e che si è invece rivelato, con i suoi geiser di acqua che sono l’evidenza di un mare sotterraneo, un mondo dove potrebbero esserci le condizioni per lo sviluppo di forme di vita. Il cammino finale della missione aveva sulla Terra diversi ‘occhi’ attenti a seguirne le ultime tracce. Tra questi, posizionata in provincia di Cagliari, c’è anche la Sardinia Deep Space Antenna (SDSA) dell’Agenzia Spaziale Italiana, ultima arrivata ma tra le più potenti antenne che fanno parte del Deep Space Network. SDSA ha visto il team dell’ASI, ben supportato dai colleghi dell’INAF, equipaggiare in poco tempo, ma in modo adeguato il radiotelescopio per “sentire” le missioni di spazio profondo. Il Sardinia Radio Telescope (SRT) è stato realizzato pochi anni fa dall’INAF (Istituto Nazionale di Astrofisica) in collaborazione con l’Agenzia Spaziale. A salutare il gran finale di Cassini, seguito dalla sede dell’Agenzia Spaziale Italiana, in collegamento sia con il Sardinia Radio Telescope che con la sede di Thales Alenia Space a L’Aquila, presenti anche Luciano Guerriero, primo presidente dell’ASI, e Giancarlo Setti, ex presidente dell’INAF, che furono testimoni dell’avvio della lunga e fortunata missione di esplorazione interplanetaria.

Frutto di una collaborazione iniziata nella seconda metà degli anni ’80 tra la NASA, l’Agenzia Spaziale Europea e l’Agenzia Spaziale Italiana, la sonda Cassini-Huygens fu lanciata da Cape Canaveral il 15 ottobre del 1997 a bordo di un vettore Titan IV- Centaur che la portò, dopo un lungo viaggio con fly-by intorno a Venere, Terra e Giove ad inserirsi in orbita intorno al pianeta degli anelli il 1 luglio del 2004. A Natale dello stesso anno Huygens si distaccò e il 14 gennaio seguente iniziò la discesa, frenata da tre paracaduti in sequenza, tra le nubi di Titano una delle Lune di Saturno (nella foto). Il lander acquisì dati per le due ore e mezzo della discesa ed un’altra mezzora sulla superficie, quanto le batterie di bordo consentirono, ma tanto bastarono per far vedere un mondo mai neppure immaginato dove le rocce sono di ghiaccio e la superficie è formata da una mistura di idrocarburi. Un paio di anni dopo il radar ci mostrò anche l’esistenza di laghi e mari di metano liquido al polo nord. Cassini, la cui operatività era inizialmente prevista essere di 4 anni ha lavorato a una distanza di quasi un miliardo e mezzo di chilometri, il suo segnale radio per giungere sulla Terra ha impiegato mediamente 60 minuti. Cassini-Huygens sarà ricordata come la missione dei primati: 7.9 miliardi di chilometri percorsi in totale; 6 lune di Saturno scoperte, 162 flyby delle lune; oltre 453.000 fotografie scattate; 22 ‘tuffi’ tra gli anelli di Saturno, 2.5 milioni di comandi eseguiti; 294 orbite completate; 635 GB di dati raccolti; 27 nazioni coinvolte nella missione; quasi 4.000 articoli scientifici pubblicati a partire dai dati raccolti. In base ad un accordo di collaborazione con la NASA, l’Agenzia Spaziale Italiana ha sviluppato per Cassini l’antenna ad alto guadagno con incorporata un’antenna a basso guadagno (che hanno assicurato le telecomunicazioni con la Terra per l’intera durata della missione), lo spettrometro VIMS, il sottosistema di radioscienza (RSIS) e il Radar che utilizza anch’esso l’antenna ad alto guadagno. L’ASI ha inoltre sviluppato, per la sonda Huygens, lo strumento HASI che ha misurato le proprietà fisiche dell’atmosfera e della superficie di Titano.