Seleziona una pagina
Insight è su Marte

Insight è su Marte

La sonda Insight della NASA ha toccato il suolo di Marte alle 20:54 ora italiana, posando le tre gambe del modulo di discesa come previsto nella regione Elysium Planitia, prossima all’equatore marziano, portando a termine con successo il viaggio iniziato il 5 maggio 2018. Una missione segnata anche dal successo della tecnologia italiana: quella del sensore stellare progettato e costruito da Leonardo negli stabilimenti fiorentini di Campi Bisenzio, che ha guidato con la precisione necessaria l’intera navigazione per 458 milioni di chilometri, come dello strumento Larri, un sistema di microriflettori che serve a indicare la posizione del lander, sviluppato dall’Istituto nazionale di fisica nucleare con il supporto dell’Agenzia spaziale italiana. Senza contare che i segnali che tutto è andato bene sono stati raccolti dalla grande parabole del Sardinia Radar Telescope in Sardegna. Come in tutte le missioni che prevedono lo sbarco sulla superficie del Pianeta Rosso, anche quella di Insight ha tenuto con il fiato sospeso i tecnici del Jet Propulsion Laboratory di Pasadena, sede del centro di controllo. Sette minuti di attesa, iniziati con la manovra che ha permesso di ridurre drasticamente la velocità d’ingresso nella tenue atmosfera marziana, di 19.800 chilometri orari, portandola con l’aiuto del paracadute e dei motori di frenata soli 8 km/h. La prima immagine trasmessa da Insight è risultata scopra, a causa della polvere sollevata dai retrorazzi e che ha ricoperto l’obiettivo. Un problema che impedirà di rimuovere le impurità e realizzare fotografie nitide della pianura in cui la sonda è atterrata. Il programma prevede, nel giro di qualche ora, il dispiegamento dei pannelli solari, che alimentano gli strumenti.  Anche l’Europa riveste un ruolo rilevante in questa missione avendo realizzato i due strumenti principali, il sismometro e il sensore termico. In particolare, l’agenzia spaziale francese Cnes e l’Institut de Physique du Globe di Parigi hanno fornito il sismometro, con contributi significativi del Max Planck Institute for Solar System Research in Germania, il Politecnico di Zurigo in Svizzera, e l’Imperial College e la Oxford University nel Regno Unito, oltre che dallo stesso Jpl. L’agenzia spaziale tedesca Dlr ha invece fornito la “talpa” con sensore termico, che permetterà di misurare la temperatura del sottosuolo fino a cinque metri di profondità, con contributi significativi dal Centro di ricerche spaziali dell’Accademie delle scienze polacca. Il Centro de Astrobiología spagnolo ha infine fornito i sensori per il vento. Ultima nota scientifica, il ruolo di gregari dei cubesat Mars Cube One, i due microsatelliti che hanno viaggiato e accompagnato la sonda Insight fino all’ingresso in atmosfera documentandone la discesa e l’arrivo al suolo attraverso la trasmissione dei dati giunti sulla Terra dopo 8 minuti, il tempo necessario a coprire l’attuale distanza con Marte pari a 146 milioni di chilometri.

 

 

Scelto il sito per Exomars 2020

Scelto il sito per Exomars 2020

ALTEC e Thales Alenia Space, insieme all’Agenzia Spaziale Italiana, hanno presentato ufficialmente in corso Marche a Torino il centro di controllo ROCC della missione ExoMars 2020 che sovrintenderà alle attività di superficie del rover europeo che sarà rilasciato sul Pianeta Rosso nel marzo 2021. A tale proposito la quarantina di esperti della comunità scientifica hanno proposto Oxia Planum come luogo in cui fare atterrare il rover. Una proposta che sarà vagliata, ed eventualmente approvata entro la metà del 2019, dall’Agenzia Spaziale Europea e da quella russa Roscomos che hanno varato la missione Exomars 2020, a cui l’Agenzia Spaziale Italiana contribuisce con un investimento pari al 40 per cento del costo totale. L’alternativa a Oxia Planum, prescelta perché presenta meno rischi, sia nella fase di discesa e in quella operativa in superficie per il rover, sarebbe Mawrth Vallis.  Raffaele Mugnuolo, responsabile Asi per la partecipazione scientifica italiana alla missione e Chair del ExoMars Risc (Rover Instrument Steering Committee), ha parlato in positivo del confronto tra i componenti scientifici, ricordando che il primo obiettivo è centrare l’arrivo sulla superficie marziana, cui fa seguito la possibilità di perforare in profondità fino a due metri. E’ evidente che l’attenzione su Oxia Planum è motivata dai segni della presenza in passato di acqua allo stato liquido, che può aver giocato un ruolo determinante per ospitare forme elementari di vita. La capacità di scandagliare, offerta dalla tecnologia italiana sviluppata per il rover europeo, si lega al programma di esplorazione affidato a Maria Cristina De Sanctis, ricercatrice dell’Istituto nazionale di astrofisica e principal investigator dello spettrometro italiano Ma_Miss (Mars Multispectral Imager for Subsurface Studies) a bordo della missione ExoMars 2020. La discesa e lo sbarco del rover devono soddisfare due requisiti. Il primo riguarda il sito di atterraggio, che deve trovarsi ad un livello adeguatamente basso, in modo che ci siano atmosfera e tempo sufficienti per aiutare a rallentare la discesa del paracadute, rispettando le ellissi di atterraggio di 120 x 19 km, consentendo lo spiegamento delle rampe della piattaforma di superficie per l’uscita del rover e la successiva guida del rover. Il secondo consiste nell’identificare i siti in cui il rover può usare il trapano per recuperare campioni fino a due metri di profondità.

BepiColombo verso Mercurio

BepiColombo verso Mercurio

Il razzo vettore europeo Ariane 5 ha messo in orbita alle 3:45 notturne (ora italiana) di sabato 20 ottobre le due sonde unite della missione BepiColombo che ha come obiettivo l’esplorazione e lo studio del pianeta Mercurio. Il lanciatore si è sollevato dalla piattaforma nel centro spaziale europeo di Kourou in Guyana Francese, immettendo con estrema precisione e nei tempi stabiliti il prezioso carico utile, frutto della collaborazione tra l’Agenzia Spaziale Europea e quella giapponese Jaxa. Il rispetto della traiettoria è più che mai decisivo in una missione complessa e articolata come BepiColombo, che giungerà a destinazione nel dicembre 2025, combinando propulsione ionica e chimica ma soprattutto facendo ricordo a numerose spinte gravitazionali durante il lungo percorso: la sonda effettuerà, infatti, un flyby (volo ravvicinato) attorno della Terra, due attorno a Venere e sei attorno Mercurio prima di effettuare le manovre di frenata e posizionamento orbitale intorno al pianeta più vicino al Sole. La missione è composta da due sonde complementari che volano unite tra loro con l’obiettivo di svelare i più profondi segreti di Mercurio, il pianeta più vicino al Sole e tra i meno esplorati nel Sistema Solare. Dopo Mariner 10 e MESSENGER, entrambe missioni della NASA, saranno l’Europa e il Giappone a fare il grande passo verso il cosiddetto “pianeta degli estremi”. La denominazione della missione è un omaggio a Giuseppe Colombo, matematico, fisico, astronomo e ingegnere padovano, soprannominato il “Meccanico del cielo”,

Le sonde sono l’europea Mercury Planetary Orbiter (MPO), che avvicinandosi a Mercurio avrà il compito di analizzarne la superficie e la composizione, e la giapponese Mercury Magnetospheric Orbiter (MMO), che avrà lo scopo di studiare in dettaglio l’ambiente magnetico di Mercurio, l’interazione del pianeta con il vento solare e la chimica della sua impalpabile esosfera. L’Agenzia Spaziale Italiana (ASI) ha realizzato 4 dei 16 strumenti/esperimenti a bordo dei due orbiter, grazie al contributo della comunità scientifica italiana, tra cui i ricercatori dell’Istituto Nazionale di Astrofisica (INAF) e un gruppo dell’Università “La Sapienza” di Roma. Su MPO sono imbarcati gli strumenti italiani: l’accelerometro ISA, i rilevatori di particelle SERENA e la suite SIMBIO-SYS composta da tre strumenti ottici, mentre il quarto, il trasponder MORE che misurerà i segnali di onde elettromagnetiche in banda Ka che saranno inviati dal trasponder a terra e viceversa.  Il contributo italiano si amplia anche con la partecipazione allo strumento francese PHEBUS, spettrometro dedicato all’indagine della composizione e della dinamica dell’esosfera di Mercurio. La partecipazione è regolata da un accordo bilaterale ASI-CNES e riguarda le attività di calibrazione mirate a definire un modello radiometrico completo dello strumento svolte dal team del CNR e Università di Padova.

BepiColombo è la quinta missione Cornerstone del programma Horizon 2000+ dell’Agenzia Spaziale Europea. L’industria italiana ha collaborato alla realizzazione della missione, in particolare Leonardo e Thales Alenia Space, che è stata il subcontraente principale del satellite (costruito da Airbus Defence and Space in qualità di prime contractor) guidando le 35 aziende europee coinvolte. In particolare, Thales Alenia Space è responsabile dei sistemi di telecomunicazione, controllo termico, distribuzione della potenza elettrica, della integrazione e prove del satellite completo e del supporto alla campagna di lancio. L’azienda ha sviluppato, inoltre, il Deep Space Transponder – trasponditore in banda X e Ka, i computers di bordo, la memoria di massa e l’antenna ad alto guadagno. Per conto dell’Agenzia Spaziale Italiana Thales Alenia Space ha inoltre sviluppato l’esperimento di Radioscienza More e l’accelerometro ISA.

La peculiarità di BepiColombo è quello di sviluppare particolari tecnologie per le alte temperature: infatti la distanza Mercurio-Sole è poco meno di 1/3 della distanza Terra-Sole e si stima che la radiazione solare in orbita intorno a Mercurio sia 10 volte più intensa di quelli in orbita intorno alla Terra. Per arrivare su Mercurio, la sonda – nella parte esposta al Sole – sopporterà temperature superiori a 300°C, con escursioni sul riflettore dell’antenna a 400°C e oltre, mentre all’interno del modulo MPO gli strumenti potranno operare a temperature molto meno severe, da 0°C a 40°C. E’ stato quindi necessario sviluppare materiali e dispositivi ad hoc per tutti gli elementi esposti quali le coperte termiche, le antenne, le celle solari e per i relativi meccanismi di puntamento. Il Trasponditore costituisce una sostanziale innovazione della linea di apparati di radio-comunicazione per lo Spazio Profondo. L’Antenna ad alto guadagno (interamente sviluppata da Thales Alenia Space in Italia) si caratterizza per le elevatissime prestazioni, indispensabili per affrontare le severe condizioni ambientali di Mercurio. Si tratta di una evoluzione dell’antenna realizzata per la nota missione Cassini-Huygens per lo studio di Saturno.

Roberto Battiston presidente dell’Agenzia Spaziale Italiana, sottolinea il contributo della comunità scientifica e dell’industria aerospaziale del nostro Paese a una missione tra le più affascinanti di sempre perché ci porta ad esplorare Mercurio, un pianeta estremo di cui conosciamo ancora poco, difficile da raggiungere ma importantissimo dal punto di vista della planetologia per capire l’origine e l’evoluzione del nostro Sistema Solare. Nichi D’Amico, presidente dell’INAF, commenta con soddisfazione il coinvolgimento di numerosi ricercatori del nostro istituto dimostra che l’Italia è al centro dell’astrofisica mondiale, anche nelle missioni spaziali. Scienziati e ingegneri dell’INAF saranno in prima linea anche nei prossimi anni, quando arriveranno i primi dati riguardanti Mercurio.

Thales Alenia Space per PLATO

Thales Alenia Space per PLATO

Thales Alenia Space ha siglato con OHB un contratto per il nuovo programma Plato dell’Agenzia Spaziale Europea, finalizzato a scoprire sistemi planetari extrasolari potenzialmente abitabili. OHB System AG sarà prime contractor e Thales Alenia Space partner del progetto. L’accordo è stato sottoscritto durante la 69esima edizione del Congresso Internazionale di Astronautica ospitato a Brema. PLATO sarà la terza missione scientifica di classe media nell’ambito del programma Cosmic Vision, segue Solar Orbiter e Euclid e precede Ariel (M4). Il satellite sarà lanciato nel 2026 con una missione iniziale prevista di quattro anni e mezzo. Obiettivo di PLATO è scoprire sistemi planetari extrasolari e, in modo particolare, pianeti simili alla Terra nelle zone abitabili (compatibili con acqua allo stato liquido) vicino a stelle come il nostro Sole. A differenza delle missioni che l’hanno preceduta, CoRot e Kepler, PLATO offrirà un’opportunità unica di condurre osservazioni stabili e ad ampio campo su un arco di tempo molto lungo (da due a quattro anni), consentendoci di individuare e di caratterizzare pianeti che orbitano intorno al sole lentamente, proprio come la Terra. Il satellite verrà posto in orbita intorno al punto di Lagrange L2 con un payload scientifico di 26 fotocamere e le relative componenti elettroniche. Thales Alenia Space (France e UK) si occuperà dell’avionica e dell’integrazione del modulo di servizio (SVM), i cui test saranno eseguiti e integrati nel sito di Thales Alenia Space a Cannes, con grande coinvolgimento dei team Thales Alenia Space del Regno Unito. Le unità ottiche dei 26 telescopi di PLATO sono nate, grazie al supporto dell’Agenzia Spaziale Italiana, nei laboratori INAF e saranno costruite a Campi Bisenzio da Leonardo con la collaborazione dell’Università di Berna, di Thales Alenia Space e Medialario, e saranno poi consegnate al centro spaziale di OHB “Optics & Science” a Oberpfaffenhofen, vicino a Monaco. Qui verranno svolte, in una camera pulita di classe 5, le attività di integrazione degli strumenti.

Donato Amoroso, Amministratore Delegato di Thales Alenia Space Italia, ha espresso viva soddisfazione per il varo della partnership con OHB nello sviluppo e nell’ assemblaggio di questo nuovo satellite scientifico per ESA, sottolineando che “il programma PLATO sarà il risultato delle competenze nel campo dell’avionica, già impiegate nei nostri satelliti di Telecomunicazioni e Osservazione della Terra, e delle conoscenze acquisite su altre missioni L2, ovvero Herschel-Planck e Euclid”.

Ariane 5 a quota 100

Ariane 5 a quota 100

Il razzo vettore europeo Ariane 5 ha compiuto la sua centesima missione, VA243, che corrisponde al 300esimo volo di un lanciatore della famiglia Arianespace, il consorzio nato nel 1980 e forte della più alta percentuale di affidabilità. Dopo uno stop del countdown, quando mancava poco più di un minuto alla partenza (inizialmente prevista alle 18:53 ora locale – le 23:53 ora italiana), Ariane 5 si è sollevato dalla piattaforma ELA-3 dello spazioporto europeo di Kourou nella Guyana Francese alle 19:38 ora locale (le 00:38 ora italiana), spinto dal potente motore criogenico Vulcain, che brucia in dieci minuti la miscela di 130 tonnellate di ossigeno liquido e 25 di idrogeno liquido ma si limita a contribuire all’8% della propulsione nella fase iniziale, quando funzionano i due razzi-vettori laterali, i booster (EAP, Etage d’Acceleration à Poudre) sviluppati e realizzati da Avio, ciascuno dei quali brucia in poco più di due minuti 240 tonnellate di propellente solido: perclorato di ammoniaca (68%) che funzione da ossidante, polvere di alluminio (18%), con funzione di riducente e polibutadiene (14%) che funge da legante e catalizzatore. I due booster di Avio garantiscono non solo la spinta iniziale, ma anche la corretta traiettoria balistica del vettore, essendo dotati di ugello mobile, che serve a comandare la direzione di salita di Ariane 5, potendosi inclinare di circa 6 gradi e mezzo intorno alla verticale. Dopo circa 130 secondi da lancio, a una quota di circa 55 chilometri, i due propulsori di Avio vengono sganciati dallo stadio principale e ricadono nell’Oceano Atlantico al largo di Kourou.

La centesima missione di Ariane 5 è un traguardo storico ma anche un successo dell’industria aerospaziale e dei sistemi di propulsione italiani. Alto 30,5 metri, con un diametro di 5,4 metri e una massa a pieno carico di circa 170 tonnellate, Ariane 5 ha trasferito in orbita geostazionaria due satelliti per telecomunicazioni Horizons 3e e Azerspace-2/Intelsat 38 per un peso totale di 10 tonnellate. La missione è stata completata 42 minuti dopo il lancio. Il primo satellite a essere rilasciato è stato Horizons 3e 28 minuti dopo il decollo; dopo altri 14 minuti è stata la volta di Azerspace-2/Intelsat 38. Per entrambi i satelliti la vita operativa prevista è di 15 anni. Nei cento lanci di Ariane 5 sono stati messi in orbita 207 satelliti.

Lunar Orbital Platform

Lunar Orbital Platform

Thales Alenia Space ha firmato con l’Agenzia Spaziale Europea, nell’ambito del programma Lunar Orbital Platform, contratti per lo studio di moduli spaziali abitabili con capacità di attracco per altri veicoli, di camere di compensazione, sia per esperimenti scientifici sia per attività extra-veicolari. L’inizio della costruzione è previsto a partire dal 2020 e Thales Alenia Space, che ha realizzato a Torino il 50% dei moduli della stazione spaziale, sarà prime contractor degli studi per ESPRIT e I-HAB (un elemento pressurizzato per l’equipaggio con funzionalità di attracco per i veicoli spaziali che dalla Terra raggiungeranno l’avamposto lunare). ESPRIT è un programma che include sistemi di stoccaggio e rifornimento del propellente per il primo modulo americano di gateway.

I-HAB è un elemento pressurizzato con funzioni di abitabilità e supporto vitale per l’equipaggio, che implementa funzionalità di attracco per fornire interfacce e risorse a veicoli che visiteranno l’avamposto cislunare. Facendo leva sulla significativa esperienza e l’elevato know-how di Thales Alenia Space nello sviluppo degli elementi pressurizzati della Stazione Spaziale Internazionale (ISS), e basandosi su nuovi processi e tecnologie, I-HAB rappresenterà l’evoluzione degli elementi della ISS per una nuova generazione di moduli destinati all’esplorazione dello spazio profondo. I nuovi moduli risponderanno alle esigenze di avere strutture più leggere, un’architettura funzionale ed avionica migliorata, dei sistemi di controllo termico più efficienti, e soluzioni innovative sia per l’accomodamento di equipaggi e risorse che per gli alloggiamenti, promuovendo spazi interni abitabili più confortevoli. Nello sviluppo di questo nuovo progetto, Thales Alenia Space guiderà, dal punto di vista tecnico, un team qualificato di altre aziende spaziali europee a supporto di diverse aree tecniche, garantendo un ruolo chiave di posizionamento per l’Europa nello sviluppo del Gateway. ESPRIT è un sistema, progettato per essere lanciato con lo Utilization Module (un primo modulo pressurizzato fornito dagli Stati Uniti), che include sistemi di stoccaggio e di rifornimento del propellente (xeno e idrazina) per il Power Propulsion Element (il primo elemento americano della Gateway), sistemi di comunicazione con la Luna, interfacce per payload esterni ed una camera di compensazione da ultizzare a scopi scientifici.