Seleziona una pagina
Anteprima di Beyond

Anteprima di Beyond

L’arrivo sulla ISS dei primi due esperimenti della missione Beyond targati ASI, trasportati dalla navetta cargo Cygnus, è previsto due giorni dopo il lancio avvenuto nella tarda serata di mercoledì 17 aprile. NUTRISS è un esperimento dell’Università di Trieste realizzato in collaborazione con la Kayser Italia, attraverso il quale si cercherà di mantenere una composizione corporea ideale per l’astronauta evitando l’aumento del rapporto massa grassa/massa magra dovuto all’inattività da microgravità. Con NUTRISS sarà monitorata costantemente, anche pre e post volo, la massa e la composizione corporea di Parmitano. I singoli dati verranno inviati a terra al team scientifico che provvederà a dare ritorni all’astronauta per eventuali correzioni legate all’introito energetico. L’esperimento mira a far luce sulla fisiopatologia dei cambiamenti nella composizione corporea durante il volo spaziale a lungo termine. Questi risultati miglioreranno le prestazioni fisiche e la qualità della vita dell’astronauta durante il volo spaziale e ottimizzeranno le fasi di recupero degli astronauti sulla Terra dopo l’atterraggio. I dati sperimentali ottenuti potrebbero, inoltre, essere usati nella gestione clinica di pazienti immobilizzati malnutriti e/o obesi, migliorando così la qualità della vita umana sulla Terra.

La tutela dell’apparto uditivo in orbita è il focus del secondo esperimento in partenza per la ISS: Acoustic Diagnostics. Guidato dall’università di Tor Vergata di Roma con il supporto del Campus Bio-Medico e di ALTEC, la sperimentazione intende valutare eventuali danni del sistema uditivo confrontando i risultati di numerosi test audiologici effettuati sugli astronauti prima e dopo la missione, e in relazione anche con i test obiettivi dell’udito durante la loro permanenza in orbita. Per questo è stato messo a punto un sistema innovativo per la misura dei prodotti di distorsione otoacustici (DPOAE), che garantisce elevata riproducibilità dei risultati sfruttando un particolare sistema di calibrazione dello stimolo nel canale uditivo e un’elevata risoluzione in frequenza. I risultati dei test permetteranno di evidenziare o di escludere danni all’apparato uditivo, anche di lieve entità e di natura transitoria, associabili alla permanenza nelle condizioni di rumore e microgravità caratteristiche della ISS, con evidenti implicazioni sulla progettazione di future missioni di lunga durata dedicate all’esplorazione del Sistema Solare.

“NUTRISS e Acoustic Diagnostics sono sviluppati da ASI per la prima volta nell’ambito di un accordo di cooperazione per l’utilizzo nazionale delle risorse ESA a bordo della Stazione Spaziale – spiega Giovanni Valentini, program manager dei due esperimenti e responsabile dell’utilizzazione delle risorse ASI sulla ISS – Proprio grazie a questo accordo, l’ASI ha la possibilità di condurre questi due esperimenti molto impegnativi, poiché richiederanno fino a circa 29 ore di lavoro e 14 sessioni sperimentali, nonché il coinvolgimento di Luca Parmitano per entrambi e anche dell’astronauta americano Andrew Morgan per Acoustic Diagnostics”. Le sessioni sperimentali per entrambi si terranno circa ogni mese. Per l’integrazione degli esperimenti e le operazioni in orbita ASI è supportata da un team industriale composto da ARGOTEC e Telespazio.

La navicella Cygnus verso la ISS

La navicella Cygnus verso la ISS

La navicella Cygnus, alla sua undicesima missione operativa per trasferire carichi verso la Stazione Spaziale Internazionale, è stata lanciata con successo alle 22.46 ora italiana di mercoledì 17 aprile, dalla base di lancio dalla base di lancio Wallops Flight Facility della Nasa, in Virginia, lanciatore Antares-230. La navetta cargo Cygnus NG-11 trasporta NUTRISS e Acoustic Diagnostics, i primi due dei sei esperimenti previsti per la missione Beyond, la seconda nello spazio per l’astronauta italiano dell’ESA Luca Parmitano, che partirà il 20 luglio e ricoprirà il ruolo di comandante della stazione nella seconda parte della sua permanenza in orbita. Cygnus è composta dal Modulo di Servizio della Northrop Grumman Innovation Systems dal Modulo Cargo Pressurizzato (PCM) in versione avanzata, sviluppato e costruito da Thales Alenia Space, che ha una capacità di carico di 3,5 tonnellate in un volume totale di 27 metri cubici.

Quella lanciata è la versione “enhanced” del Modulo Cargo Pressurizzato, caratterizzata da nuova modalità di carico. A differenza di quanto avvenuto in precedenza, quando tutti i carichi utili dovevano essere collocati all’interno del modulo circa quattro giorni prima del lancio, il caricamento di esperimenti scientifici urgenti – inclusi topi vivi – nel Cygnus avviene solo 24 ore prima del lancio. L’undicesima missione di Cygnus è stata ribattezzata con il nome di Roger Chaffee, l’astronauta dell’Apollo 1 perito in un incendio scoppiato durante un pad test. È previsto che Cygnus resti nella Stazione Spaziale Internazionale fino al mese di luglio, quando si celebrerà il cinquantesimo anniversario della missione Apollo 11 ed è atteso l’equipaggio della Soyuz Ms-13 che comprende Parmitano, Skvorcov e Morgan. La S.S. Roger Chaffee dimostrerà, inoltre, anche la capacità della navicella Cygnus di rimanere in orbita dopo la separazione dalla Stazione Spaziale, in supporto a operazioni di servizio come piattaforme per ricerche scientifiche nelle missioni future.

Thales Alenia Space fornisce i moduli cargo a Northrop Grumman fin dall’inizio del Programma Cygnus. Il primo contratto nel 2009 prevedeva il trasporto di nove moduli, mentre il secondo contratto, nel 2016, ne aggiungeva altri nove. Undici PCM operativi più un modulo demo sono stati lanciati fino ad oggi, quattro in versione originale e otto nella versione enhanced. Costruiti da Thales Alenia Space usando un nuovo sistema di saldatura ad attrito, la caratteristica di questo nuovo modulo è un peso più leggero e un design più efficiente che aumenta il peso di carico e il volume, con la capacità di accogliere carichi nonstandard.

Marte e il dilemma del metano

Marte e il dilemma del metano

Primi risultati scientifici dagli strumenti a bordo della Trace Gas Orbiter (TGO), la sonda della missione ExoMars in orbita attorno a Marte, frutto dell’analisi di un team internazionale che vede la partecipazione dell’Agenzia Spaziale Italiana, dell’Istituto Nazionale di Astrofisica (INAF) e dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV). I dati raccolti si riferiscono alla ricerca di metano nell’atmosfera del Pianeta Rosso e all’analisi delle polveri sospese. La missione dell’Agenzia Spaziale Europea (ESA) e RosCosmos ExoMars ha utilizzato strumenti che vedono un fondamentale contributo italiano, sia dal punto di vista scientifico sia dal punto di vista tecnologico e industriale, con Thales Alenia Space Italia alla guida della progettazione di entrambe le missioni ExoMars e il forte supporto fornito dall’ASI.

“La sonda TGO”, spiegano Giancarlo Bellucci e Giuseppe Etiope, i due ricercatori italiani dell’INAF e dell’INGV che hanno collaborato allo studio, “attraverso i due spettrometri ad alta precisione NOMAD e ACS, ha scandagliato l’atmosfera di Marte a varie latitudini da aprile ad agosto del 2018 non rilevando, in questa fascia spazio-temporale, il metano. Il gas potrebbe però esistere a concentrazioni inferiori rispetto a quelle rilevabili dagli strumenti (0.05 parti per miliardo in volume, o ppbv)”. Tale risultato è solo apparentemente in contrasto con le precedenti rilevazioni di metano effettuate attraverso telescopi terrestri, il rover Curiosity della NASA e, recentemente, attraverso la sonda europea Mars Express, e apre a nuove interpretazioni poiché sulla base delle conoscenze attuali, il metano, una volta rilasciato nell’atmosfera di Marte, dovrebbe diffondersi velocemente ovunque, persistendo per alcune centinaia di anni.

“In particolare”, prosegue Giancarlo Bellucci dell’INAF, “il metano su Marte sembra apparire e scomparire velocemente, suggerendo la presenza di un meccanismo di distruzione in grado di rimuovere efficientemente tale gas dall’atmosfera. Diversi meccanismi sono già stati proposti e alcuni di questi sembrano essere in grado di spiegare le variazioni spazio-temporali osservate. Tuttavia, si tratta ancora di risultati preliminari di simulazioni o di esperimenti eseguiti in laboratorio su campioni limitati, la cui validità e importanza statistica dovrà essere dimostrata da ulteriori studi”. Alcuni ricercatori considerano plausibile la variabilità della presenza di metano nell’atmosfera marziana.

“Il metano”, chiarisce Giuseppe Etiope dell’INGV, “potrebbe essere prodotto all’interno del pianeta e la sua migrazione e fuoriuscita nell’atmosfera potrebbe avvenire solo in certe zone, geologicamente idonee, specialmente dove esistono faglie e fratture nelle rocce. Abbiamo già verificato in studi precedenti che, come sulla Terra, questa fuoriuscita di gas dalle rocce può essere episodica e saltuaria. Questo spiegherebbe in parte le variazioni di metano rilevate finora. Rimane però l’ipotesi del meccanismo di rimozione rapida del gas dall’atmosfera: questo è l’aspetto da scoprire nel prossimo futuro. Comunque la sonda TGO non rileva metano in concentrazioni al di sotto di 0.05 ppbv. Con questo limite è ancora possibile avere emissioni locali di metano, simili ad alcune osservate sulla Terra, che una volta diluite nell’atmosfera marziana darebbero luogo a una bassa concentrazione di fondo. Il metano potrebbe dunque essere rilevato solo in prossimità della zona di emissione e in un periodo non troppo lontano dall’evento di rilascio”.

Inoltre, al fine di analizzare le polveri sospese, i due spettrometri a bordo della sonda TGO hanno realizzato le prime misurazioni ad alta risoluzione dell’atmosfera marziana durante una tempesta di sabbia con il metodo dell’occultazione solare, osservando cioè come la luce del Sole viene assorbita nell’atmosfera, rivelando così la composizione chimica dei suoi costituenti. “La misura del profilo verticale dell’acqua in condizioni di tempesta di polvere globale ha permesso di determinare gli effetti del riscaldamento atmosferico sulla distribuzione del vapore acqueo”, spiega Giancarlo Bellucci. “In condizioni normali, infatti, il vapore acqueo condensa sotto i 40 km. A causa della tempesta globale, invece, l’atmosfera si riscalda e il vapore acqueo può migrare a quote più elevate. Questo meccanismo era previsto dai modelli di circolazione atmosferica ma questa è la prima volta che viene osservato. La sonda TGO, inoltre, ha anche misurato per la prima volta la distribuzione verticale di un isotopo dell’acqua, importante per la comprensione della storia dell’acqua su Marte”. Ciò ha permesso di ricostruire la distribuzione verticale del vapore acqueo e dell’acqua semi-pesante (in cui uno dei due atomi di idrogeno è sostituito da un atomo di deuterio, una forma di idrogeno con un neutrone aggiuntivo) dalla prossimità della superficie marziana fino a oltre 80 km di altezza. I nuovi risultati evidenziano l’azione che esercita la polvere presente nell’atmosfera sul vapore d’acqua, così come la perdita di atomi di idrogeno nello spazio. “Alle latitudini settentrionali”, conclude Ann Carine Vandaele, del Royal Belgian Institute for Space Aeronomy (BIRA-IASB) e principal investigator di NOMAD, “abbiamo osservato nuvole di polvere a quote di circa 25-40 km che in precedenza non erano state rilevate, mentre alle latitudini meridionali abbiamo visto strati di polvere spostarsi a quote più alte”.

Al via la missione Prisma

Al via la missione Prisma

Il razzo Vega dell’Agenzia Spaziale Europea, progettato e costruito in Italia da Avio, ha messo in orbita il satellite Prisma, acronimo di “PRecursore IperSpettrale della Missione Applicativa”, che condurrà missione prototipale dell’Agenzia spaziale italiana sviluppata per testare tecnologie iperspettrali per l’osservazione della Terra. Il lancio è avvenuto alle 2:50 (ora italiana) della notte tra il 21 e il 22 marzo dallo spazioporto europeo di Kourou, in Guyana Francese, sotto la responsabilità di Arianespace. Una missione che esalta le capacità dell’Italia in campo spaziale, combinando le tecnologie satellitari avanzate con l’affidabilità del lanciatore. Il satellite Prisma, frutto della collaborazione tra imprese italiane, guidate da Ohb Italia, responsabile della missione e della gestione dei tre principali segmenti – terra, volo e lancio – e Leonardo, che ha realizzato la strumentazione elettro-ottica, sarà in grado di monitorare lo stato delle risorse naturali, la qualità dell’aria e i livelli di inquinamento su scala globale da un’orbita di 620 chilometri di quota. Fondamentale, a tale riguardo, la precisione e l’affidabilità di Vega, che a distanza di quatto mesi dall’ultimo lancio ha realizzato con successo la sua 14esima missione, 12 delle quali servite ad avviare missioni dedicate all’osservazione della Terra. Prisma è un satellite innovativo, dotato di una strumentazione elettro-ottica, in grado di lavorare in numerose bande disposte dal visibile al vicino infrarosso, fino all’infrarosso ad onde corte, che permetterà di studiare il nostro pianeta in profondità, riuscendo ad acquisire dati sulla composizione chimica delle aree osservate. A differenza dei sensori ottici passivi satellitari attualmente operativi, che registrano la radiazione solare riflessa dal nostro pianeta in un numero limitato di bande spettrali – solitamente al massimo una decina -, la strumentazione a bordo del satellite è in grado di acquisire 239 bande spettrali, più il canale pancromatico. Di conseguenza, le misurazioni permetteranno agli scienziati di perfezionare le conoscenze riguardanti le risorse naturali e i principali processi ambientali in atto, come i fenomeni legati al cambiamento climatico. Il centro di controllo della missione è stato realizzato da Telespazio mentre l’acquisizione e l’elaborazione dei dati avverrà al Centro Spaziale dell’Agenzia Spaziale Italiana a Matera. Piena conferma anche per il lanciatore Vega, progettato, sviluppato e realizzato da Avio nello stabilimento laziale di Colleferro, in grado di collocare in orbita satelliti di massa fino a 1.500 kg, che dalla sua entrata in servizio nel 2012 ha compiuto 14 lanci, tutti coronati da successo. Nel corso del 2019 è previsto l’arrivo della versione più performante denominata Vega C e, dal 2024 dal Vega E (Evolution), il cui nuovo motore a ossigeno liquido e metano dello stadio superiore, M10, è stato testato con successo nel mese di novembre 2018.

Crew Dragon missione compiuta

Crew Dragon missione compiuta

Pieno successo per la missione Demo-1 della capsula Crew Dragon di SpaceX, sganciatasi alle 8:32 (ora italiana) del mattino di venerdì 8 marzo dal modulo Harmony della stazione spaziale internazionale, a cui è rimasta attraccata per cinque giorni. Il rientro a terra si è conclusa con lo splashdown alle 14:45 (ora italiana) nell’Oceano Atlantico.
A bordo della capsula, senza equipaggio, insieme al manichino Ripley, ispirato alla protagonista del film Alien, dotato di sensori per la registrazione delle sollecitazioni a cui saranno sottoposti i futuri membri d’equipaggio, e i materiali con i risultati i oltre 200 esperimenti condotti sulla ISS. La missione era iniziata
il 2 marzo 2019 con il lancio del razzo Falcon 9 dalla piattaforma 39° di Cape Canaveral, da dove sono partiti tutti i voli del programma Apollo.
La perfetta riuscita di Demo-1 consente di pianificare la prima missione con l’equipaggio formato dagli astronauti Doug Hurley e Bob Behnken, che la NASA prevede di lanciare nel mese di luglio

In orbita la capsula Crew Dragon

In orbita la capsula Crew Dragon

La NASA si avvia a riappropriarsi della capacità di lancio di astronauti nello spazio, grazie ai successi dell’industria spaziale privata. Il primo storico passo in questa direzione è stato compiuto alle 2:49 notturne del 2 marzo in Florida (le 8:49 del mattino in Italia) quando il razzo Falcon 9 di SpaceX si è sollevato dalla rampa di lancio 39A del Kennedy Space Center a Cape Canaveral per trasferire in orbita la Crew Dragon, la capsula sviluppata per il volo umano, per la sua prima missione dimostrativa senza equipaggio. A bordo, tuttavia, su uno dei sette sedili predisposti per ospitare gli astronauti, è stato sistemato Ripley, un manichino umanoide ispirato alla dottoressa Ellen Ripley del film “Alien”, progettato per registrare attraverso una fitta rete di sensori che lo avvolge tutte le sollecitazioni del volo. Dragon è destinata a raggiungere 27 ore circa dopo il lancio, intorno alle 12 di domenica 3 marzo, la stazione spaziale internazionale con un attracco automatico.

Dopo cinque giorni agganciata alla ISS, la capsula Dragon rientrerà sulla Terra terminando la missione con uno splash-down nell’oceano Atlantico. Otto anni dopo l’ultima missione dello Space Shuttle Atlantis e a mezzo secolo di distanza dalla missione Apollo 9, che testò in orbita terrestre le operazioni di rilascio e ricongiungimento tra Lem e modulo di comando, gli Stati Uniti riaprono la stagione dei voli umani grazie all’industria di Elon Musk, che dopo il primo test si preparerà alla prima missione con equipaggio Demo-2 prevista a luglio 2019, e alla Boeing che farà debuttare la capsula CST-100 Starliner il primo aprile, per un volo senza equipaggio, facendolo seguire dalla prima missione con astronauti a bordo nel mese di agosto. Si calcola che rispetto ai 75 milioni di dollari spesi per far volare un astronauta NASA o europeo a bordo della Soyuz russa, il risparmio previsto con i nuovi sistemi di trasporto americani si aggiri intorno ai 20 milioni per ogni membro di equipaggio. La missione Demo-1 della capsula Dragon ha segnato l’ennesimo successo di SpaceX anche per il recupero del primo stadio del razzo Falcon, rientrato sulla piattaforma di Cape Canaveral circa dieci minuti dopo il lancio.