Seleziona una pagina

LISA Pathfinder

A sei mesi dall’inizio della missione, LISA Pathfinder ha raggiunto il suo obiettivo. La sonda, realizzata dall’ESA con il fondamentale contributo dell’Agenzia Spaziale Italiana, dell’Istituto Nazionale di Fisica Nucleare e dell’Università di Trento, ha dimostrato la fattibilità tecnologica della costruzione di un osservatorio spaziale per onde gravitazionali. Le attività scientifiche iniziate a marzo 2016 hanno dimostrato che le due masse di prova a bordo della navicella sono in caduta libera nello spazio sotto l’azione della sola gravità, del tutto indisturbate da altre forze esterne, immobili l’una rispetto all’altra. “L’esperimento LISA  è un nuovo messaggero che ci porterà notizie importanti sui meccanismi che regolano la vita dell’Universo come le onde gravitazionali – ha dichiarato il presidente ASI Roberto Battiston – E’ un’indagine tanto più importante dopo che le collaborazioni scientifiche LIGO e VIRGO ne hanno confermato recentemente l’esistenza. Ora resta da capire come la parte oscura dell’Universo, ossia materia ed energia oscura che ne compongono il 95%, ancora sconosciuto, agiscano sugli effetti gravitazionali. E’ una grande sfida per l’astrofisica e il sistema dello spazio italiani che ancora una volta si confermano ai massimi livelli. LISA ci indica che lo studio dell’Universo avverrà sempre di più con esperimenti nello spazio profondo, ed è un motivo in più per accelerare il lancio del prossimo satellite della costellazione e-LISA”. “È un risultato tecnologico straordinario – sottolinea Fernando Ferroni, presidente dell’INFN – e assieme al fondamentale risultato scientifico della scoperta delle onde gravitazionali, annunciato dalle collaborazioni LIGO e VIRGO solo pochi mesi fa, apre la strada a un modo completamente nuovo di studiare il nostro universo, l’astronomia gravitazionale, che ci spalanca nuovi orizzonti esplorativi. E l’Italia sta dando un contributo fondamentale al raggiungimento di questi risultati”.

La sonda LISA Pathfinder è stata progettata proprio per testare le tecnologie necessarie a costruire un osservatorio spaziale per le onde gravitazionali. In particolare al suo interno sono state poste due masse di prova identiche (due cubi di oro-platino di 2 kg ciascuna e di lato 46 mm) a una distanza di 38 cm, circondate da un vettore spaziale, che ha il compito di schermare i cubi dalle influenze esterne e che aggiusta la sua posizione continuamente per evitare di toccarle. L’aspetto cruciale dell’esperimento infatti è aver posto le masse in caduta libera, monitorando che si muovano sotto l’effetto della sola gravità, poiché anche nello spazio diverse forze – come il vento solare o la pressione di radiazione della luce solare – disturbano le masse di prova e la navicella. L’obiettivo della sonda è stato raggiunto con una precisione cinque volte maggiore di quella richiesta in fase di progetto. In un articolo pubblicato da Physical Review Letters, il team scientifico mostra che l’accelerazione relativa tra le due masse di prova è più piccola di dieci milionesimi di un miliardesimo (10-14) dell’accelerazione di gravità sulla Terra. Il successo straordinario ottenuto dalle tecnologie-chiave della missione apre le porte allo sviluppo di un grande osservatorio spaziale, capace di rivelare le onde gravitazionali di bassa frequenza, tra 0,1 mHz e 1 Hz, emesse da un ampio spettro di esotici oggetti astronomici. L’osservatorio eLISA (Laser Interferometer Space Antenna), già nel programma delle future grandi missione ESA, sarà composto da tre masse di prova analoghe a quelle testate da LISA Pathfinder, ma tenute a 1 milione di chilometri l’una dall’altra e connesse da un raggio laser, che ne misura la distanza relativa. Il triangolo costituito dalle tre masse si muoverà lungo un’orbita attorno al Sole, viaggiando a 50 milioni di chilometri dalla Terra. “Non solo abbiamo verificato che le masse di prova sono sostanzialmente immobili, ma abbiamo anche identificato la gran parte delle debolissime forze che le disturbano e con precisione mai raggiunta prima – spiega Stefano Vitale dell’Università di Trento e Istituto Nazionale di Fisica Nucleare, responsabile scientifico del LISA Technology Package, il cuore tecnologico della missione, realizzato anche con il contributo dell’Agenzia Spaziale Italiana – questi risultati straordinari mostrano che il controllo raggiunto sulle masse di prova è al livello richiesto per realizzare un osservatorio gravitazionale nello spazio.

LISA_Pathfinder_artist_s_impressionI primi due mesi di dati mostrano infatti che, nel range di frequenze tra 60 mHz e 1 Hz, la precisione di Lisa Pathfinder è limitata solo dal rumore dei sensori del sistema ottico, usato per monitorare la posizione e l’orientamento delle masse di prova. Alle frequenze tra 1 e 60 mHz, il controllo delle masse è invece limitato dal piccolo numero di molecole di gas rimaste nel vuoto intorno ai cubi e che rimbalzano sulla loro superficie. Questo effetto è diminuito rendendo ancora più spinto il vuoto esistente e ci si aspetta possa essere ridotto ulteriormente nei prossimi mesi. Infine, a frequenze ancora più basse, inferiori a 1 mHz, gli scienziati hanno misurato una forza centrifuga che agisce sui cubi e dovuta alla forma dell’orbita di LISA Pathfinder, combinato con l’effetto del rumore nel segnale dello strumento usato per orientare la sonda. Questa forza che disturba lievemente il moto delle masse nella sonda, non sarebbe però un problema per un futuro osservatorio spaziale, dove ogni massa sarebbe collocata nella sua navicella e collegata con un laser alle altre, distanti milioni di chilometri. I risultati ottenuti mostrano quindi che LISA PAthfinder ha provato la fattibilità tecnologica e aperto la strada alla realizzazione di un osservatorio per onde gravitazionali nello spazio, che sarà realizzato come terza missione di grande scala (L3) nel  programma Cosmic Vision  dell’ESA. L’attività scientifica dell’intero LISA Technology Package continuerà fino alla fine di giugno 2016 e sarà seguita da tre mesi di operazioni del Disturbance Reduction System, fornito dalla NASA-JPL per validare la tecnologia aggiuntiva di future navicelle di questo tipo.