Seleziona una pagina

Marco Raveri, 30 anni, ricercatore al Kavli Institute for Cosmological Physics di Chicago, è coautore di uno studio pubblicato su Nature Astronomy, secondo cui l’espansione dell’universo, nel corso di miliardi di anni, potrebbe aver modificato andamento, partendo a passo lento e poi accelerando, per effetto di un fenomeno che potrebbe essere imputabile all’azione di una dark energy “dinamica”. Laureato in fisica a Padova e con un dottorato alla Sissa di Trieste, Raveri firma il lavoro dopo Gong-Bo Zhao, della Chinese Academy of Sciences e University of Portsmouth in Inghilterra. Un risultato prestigioso, di cui dà notizia l’INAF, che lo ha intervistato. La mitica H0 (si legge ‘acca zero’), ovvero la costante di Hubble, rende conto dell’espansione dell’universo e ci dice a che velocità si allontanano le galassie l’una dall’altra in base alla loro distanza reciproca, consentendoci così di misurare, tramite il redshift, quanto una sorgente è lontana da noi, e dunque quanto è “antica” la sua luce. In 13 miliardi di anni la costante di Hubble è passata dal valore 67 a 73, una variazione non piccola.Ora salta fuori che la costante di Hubble potrebbe essere ballerina. L’ipotesi avanzata nello studio pubblicato su Nature Astronomy (dal titolo “Dynamical dark energy in light of the latest observations”), propone che la deriva nel tempo della costante di Hubble sia dovuta alla dinamicità dell’energia oscura. Ecco quanto spiega Raveri in una intervista a Media INAF.

Raveri, dunque la costante di Hubble è in crisi. O meglio, sembra essere in crisi la sua “costanza”. Cosa sta accadendo?

«Una delle constatazioni da cui parte il nostro lavoro è che diversi esperimenti misurano diversi valori dello stesso parametro che descrive l’espansione del nostro universo, la costante di Hubble, appunto. Da una parte misure dell’espansione dell’universo vicino a noi, quelle dello Hubble Space Telescope e di altri telescopi, indicano che la costante di Hubble ha un valore di circa 73 km/s/Mpc [km al secondo per megaparsec, ndr], con un margine di errore minore dell’uno per cento. Dall’altra parte le osservazioni del fondo cosmico di microonde (Cmb) del satellite Planck indicano indirettamente che la costante di Hubble ha un valore di circa 67.8 (± 1.3 per cento) km/s/Mpc».

Da cosa può dipendere?

«Il Cmb misura l’espansione dell’universo circa 300mila anni dopo il big bang, mentre le misure dirette della costante di Hubble ce ne danno una stima oggi, approssimativamente 13 miliardi di anni dopo. Per poter confrontare queste due misure dell’espansione dell’universo bisogna capire cosa implicano l’una per l’altra, in maniera simile al confrontare la dimensione di due oggetti, uno vicino e uno lontano. Il Cmb gioca il ruolo dell’oggetto più lontano, e per confrontarlo con misure vicine dobbiamo predire, in base ad una misura dell’espansione dell’universo 300mila anni dopo il big bang, cosa questo implica oggi. Durante i miliardi di anni che separano i tempi di queste due misure, l’espansione dell’universo ha cambiato ritmo, passando da decelerata ad accelerata, e questo fenomeno è imputato all’azione della dark energy».

Qual è la vostra ipotesi? La dark energy varierebbe solo nel tempo o anche nello spazio?

«Nei modelli che stiamo considerando la dark energy varia nel tempo e nello spazio. Le variazioni nello spazio, che potrebbero essere indirettamente rilevate da survey di galassie, sono però, nei modelli che studiamo, molto piccole e non rilevabili».

Se la dark energy ha un andamento dinamico, come suggerite, allora la tensione fra stime differenti, come quelle di Hubble e Planck, si allenterebbe?

«Nel nostro lavoro stiamo già assumendo che entrambi gli esperimenti abbiano ragione, che non ci siano contaminazioni dovute ad effetti sistematici, conosciuti o sconosciuti, che alterano i loro risultati. Cambiando l’evoluzione temporale della dark energy cambiamo il modo in cui queste due misure vengono confrontate fra di loro, migliorando il risultato di questo confronto».

Nel vostro articolo suggerite che Desi, il Dark Energy Spectroscopic Instrument che dovrebbe entrare in funzione l’anno prossimo in Arizona, possa contribuire a risolvere il problema. Che cos’ha di diverso rispetto ai telescopi attuali?

«Abbiamo considerato Desi come archetipo di un survey di galassie della prossima generazione. Rispetto ai telescopi attuali ci si aspetta che questi strumenti siano in grado di rilevare un numero maggiore di galassie misurandone la distanza da noi con grande precisione. Questo permetterà di studiare l’espansione dell’universo fornendo una misura precisa delle Baryon Acoustic Oscillations (Bao) che sono impresse nel pattern del clustering delle galassie. Una simile sensibilità, se non migliore, è attesa da survey come Euclid e Ska, ma lo studio per capire precisamente quando queste osservazioni possano contribuire è in corso».