Seleziona una pagina
SEonSE a guardia del mare

SEonSE a guardia del mare

Leonardo ha annunciato al Farnborough Airshow che è online SEonSE (Smart Eyes on the SEas), la piattaforma geospaziale per la sicurezza marittima. Grazie all’utilizzo del cloud computing e di avanzati modelli di big data analysis, SEonSE consente di accedere in tempo reale, anche da tablet o smartphone, a informazioni personalizzate su ciò che avviene in mare. Al Salone di Farnborough è stata presentata la soluzione realizzata da e-GEOS (joint venture tra Telespazio 80% e ASI 20%) che, integrando i dati provenienti da molteplici fonti, abilita servizi dual-use per sicurezza e sorveglianza marittima, controllo dei traffici illeciti, monitoraggio ambientale, lotta alla pirateria. “Con SEonSE, la sicurezza marittima può sfruttare appieno i vantaggi offerti dalla digital transformation. Una grandissima mole di dati viene elaborata automaticamente in tempo reale per la protezione delle persone e dell’ambiente marino”, ha dichiarato Luigi Pasquali, Coordinatore delle attività spaziali di Leonardo e Amministratore Delegato di Telespazio. ”La rivoluzionaria piattaforma si basa sulle competenze di un Gruppo industriale, Leonardo, leader nella progettazione e fornitura di sistemi integrati e tecnologie per la maritime domain awareness, e su 25 anni di esperienza nell’ambito dell’osservazione della Terra dallo Spazio, che vede in e-GEOS un’eccellenza internazionale.”

SEonSE elabora le informazioni acquisite da satelliti e radar costieri e le fonde in modo automatico e continuo, grazie ad algoritmi proprietari, con dati di posizione inviati dalle imbarcazioni (AIS, VMS, LRIT), registri navali e banche dati di diversa natura, informazioni meteorologiche e oceanografiche. Tali dati vengono inoltre confrontati con le informazioni storiche e i comportamenti abituali, permettendo di identificare condotte anomale e potenziali minacce per la sicurezza. Il risultato è un’informazione tempestiva e di facile accesso, utile per individuare possibili rischi, segnalati da notifiche di allerta generate automaticamente, intercettare le navi responsabili, pianificare le azioni delle autorità competenti e tracciare rotte sicure in ambienti ostili.

Cruciale per sicurezza e monitoraggio è il contributo delle immagini satellitari, che consentono di osservare su scala globale imbarcazioni cooperanti e non – quindi anche quelle che non rispettano gli obblighi di identificazione in mare – in ogni condizione meteo, in zone remote, di giorno e di notte. SEonSE, in particolare, coniuga l’alta risoluzione e la flessibilità della costellazione dei satelliti radar italiani COSMO-SkyMed e la frequenza di acquisizioni programmate delle Sentinelle del programma europeo Copernicus. La piattaforma consente inoltre, già da oggi, l’integrazione dei dati generati dalle costellazioni di mini-satelliti, come Planet e BlackSky, garantendo un aggiornamento continuo e completo della situazione in mare. SEonSE sfrutta anche, in real-time, gli oltre 7 milioni di segnali AIS inviati ogni giorno da circa 165.000 imbarcazioni e gestiti da exactEarth, azienda canadese leader nel tracciamento globale delle navi commerciali con cui e-GEOS ha firmato, al Salone di Farnborough, un accordo di partnership. SEonSE si basa su un brevetto di e-GEOS per l’elaborazione dei dati satellitari, già impiegato in molteplici attività di sicurezza marittima e in progetti internazionali, tra cui OCEAN2020, il programma di ricerca strategico del Fondo della Difesa europeo per le tecnologie di sorveglianza navale e sicurezza marittima, guidato da Leonardo.

 

 

Spazioporto in Cornovaglia dal 2021

Spazioporto in Cornovaglia dal 2021

All’airshow di Farnborough l’annuncio dell’apertura di uno spazioporto presso l’aeroporto di Newquay in Cornovaglia, dove a partire dal 2021 Virgin Orbit punta a offrire opportunità di lancio di satelliti, utilizzando un aereo Boeing 747-400 modificato, denominato “Cosmic Girl”.
Cosmic Girl sarà equipaggiato con un un razzo LauncherOne che, arrivato sopra l’Atlantico, sarà rilasciato a circa 35.000 piedi per iniziare la sua corsa verso spazio e inserire in orbita terrestre un piccolo satellite britannico. La partnership strategica tra Virgin Orbit e Cornwall Spaceport è stata accolta con viva soddisfazione da Sam Gyimah, ministro della scienza britannico, in relazione alla opportunità offerta al Regno Unito per un accesso regolare, affidabile e responsabile allo spazio.
“Questa partnership potrebbe vedere l’innovativa tecnologia di lancio offerta da Virgin Orbit contribuire in modo determinante a sviluppare l’industria dei piccoli satelliti del Regno Unito, grazie alla disponibilità di uno spaziosporto in Cornovaglia” – ha detto Gyimah, confermando che il programma nazionale di volo spaziale sarà parte della strategia industriale del governo britannico.

LauncherOne consente a Virgin Orbit di condurre missioni a basso costo in modo rapido ed efficiente. Spaceport Cornwall fornirà a Virgin Orbit una posizione strategica nell’Europa occidentale e darà un importante contributo all’ambizione della Cornovaglia di creare un’economia spaziale da 1 miliardo di sterline.
La Gran Bretagna è leader mondiale nella produzione di piccoli satelliti, ma finora non ha avuto alcun modo di portarli nello spazio. Si prevede che il mercato mondiale di lancio satellitare in rapida crescita valga circa 10 miliardi di sterline nel prossimo decennio e che potranno essere lanciati fino a 2.600 microsatelliti (sotto i 50 kg).
Lo Spaceport Cornwall potrebbe alla fine creare 480 posti di lavoro e contribuire con 25 milioni di sterline all’anno all’economia locale. Il Piano d’azione spaziale del partenariato locale (LEP) della Cornovaglia prevede che il settore spaziale più ampio potrebbe creare migliaia di posti di lavoro in Cornovaglia e nel 2030 valere per l’appunto 1 miliardo di sterline l’anno.

Testato nuovo motore P120C

Testato nuovo motore P120C

Si è svolto con successo a Kourou, nel centro spaziale europeo in Guyana francese, il test del motore a propellente solido P120C. L’esito del test è un passaggio fondamentale verso la realizzazione dei lanciatori europei di nuova generazione Vega-C e Ariane 6. Avio ha avuto un ruolo centrale nello sviluppo del P120C, il più grande motore monolitico a propellente solido al mondo ad essere costruito in fibra di carbonio, proprio negli stabilimenti Avio di Colleferro, vicino Roma.

“Il successo del test del P120C è un passo fondamentale nei programmi di sviluppo dei nuovi lanciatori europei Vega C e Ariane 6 in vista dei voli inaugurali, previsti rispettivamente nel 2019 e 2020 – ha commentato Giulio Ranzo, Amministratore Delegato di Avio – Il P120C è un grande risultato tecnologico per le sue prestazioni uniche, frutto di una radicale innovazione, combinata con oltre 30 anni di esperienza nella propulsione solida grazie alla cooperazione tra Avio e ArianeGroup.”

P120C, totalmente realizzato in fibra di carbonio, ha un peso di circa 8 tonnellate e ha una capacità di carico pari a 142 tonnellate di propellente. Negli oltre due minuti di tempo della combustione del propellente solido è in grado di generare una spinta media che equivale a quella di 15 motori per aerei passeggeri di nuova generazione. Il P120C sarà utilizzato come booster nella configurazione dei lanciatori Ariane 62 e Ariane 64, oltre ad essere impiegato come primo stadio del nuovo lanciatore Vega-C. A regime si prevede una produzione di 35 motori all’anno nello stabilimento Avio di Colleferro.

Al via l’esperimento Olimpo

Al via l’esperimento Olimpo

Nella mattinata di sabato 14 luglio è stato lanciato dalle Isole Svalbard l’esperimento Olimpo, dedicato a innovative osservazioni cosmologiche che forniranno informazioni sugli ammassi di galassie, sulle galassie primordiali e sul loro contenuto di materia oscura. Si tratta di un telescopio con lo specchio primario di più di due metri e mezzo di diametro, equipaggiato con rivelatori per microonde molto sensibili. Raffreddati a 0.3K in un criostato, tali rivelatori permettono di misurare le minime distorsioni che la radiazione cosmica di fondo subisce quando attraversa un ammasso di galassie (effetto Sunyaev-Zel’dovich). Tra il telescopio e i rivelatori è posto un interferometro differenziale che permette di scomporre la radiazione e analizzarla più nel dettaglio, fornendo le chiavi per nuove scoperte nel settore. Lo strumento è posizionato su una navicella con tutti gli accessori necessari (elettronica di lettura, pannelli solari, batterie, sistema di telemetria e telecomandi, sistema di puntamento e di controllo d’assetto) e ha un peso complessivo di circa 1900 kg; per sollevarlo è stato necessario gonfiare di elio un pallone da ottocentomila metri cubi di volume (che in quota raggiunge le dimensioni di un campo di calcio). Per sfruttare a pieno le potenzialità dello strumento è necessario infatti che le osservazioni vengano effettuate ad una quota di circa 40 chilometri (dove il disturbo dell’atmosfera residua è minimo) per almeno dodici giorni. Questo spiega la scelta del luogo di lancio: alla latitudine delle Isole Svalbard, in questo periodo dell’anno, è presente una circolazione ad alta quota che consentirà al pallone e al suo carico di circumnavigare il Polo Nord e tornare al punto di partenza e forse proseguire ancora una volta verso la Groenlandia. Qui si spera di farlo atterrare e recuperare senza grossi danni lo strumento e i suoi accessori per un nuovo volo, stavolta attorno al Polo Sud. Olimpo è un programma dell’Agenzia Spaziale Italiana che da diversi anni è impegnata nel supporto alla realizzazione dell’esperimento e nell’organizzazione del suo volo. Il lancio è stato affidato alla Swedish Space Corporation, un’azienda di grande esperienza nel settore, ma che si cimenta per la prima volta in un lancio di un payload così pesante e da una latitudine così alta.

Lo strumento è stato ideato e realizzato dal gruppo di Cosmologia Sperimentale del Dipartimento di Fisica di “Sapienza” Università di Roma, sotto la responsabilità della professoressa Silvia Masi. Contributi importanti sono stati forniti dall’Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche per gli innovativi mosaici di rivelatori KIDS, dall’Istituto di Fisica Applicata ‘Nello Carrara’ sempre del CNR per il sistema di controllo d’assetto, dall’Istituto Nazionale di Geofisica e Vulcanologia per i sensori solari e dall’Università di Cardiff per i filtri. Importante anche il contributo della ditta LEN di Chiavari che ha realizzato il sistema di telemetria per l’invio dei telecomandi allo strumento e per la raccolta dei dati scientifici. Il lancio è avvenuto alle 09.07 CET dall’aeroporto di Longyearbyen (Isole Svalbard, Norvegia); dopo una salita nominale di circa 3 ore la navicella si trova alla quota di galleggiamento nominale di circa 37 km e viaggia alla velocità circa 45 km/ora in direzione NordEst, seguendo il vortice artico che al momento risulta stabile intorno al polo. “Con il lancio di Olimpo – commenta il presidente dell’Agenzia Spaziale Italiana Roberto Battiston- l’Asi riprende una tradizione di eccellenza nel settore dei palloni stratosferici che si era interrotta con la chiusura della base di Milo, non più adeguata per le necessità della sperimentazione odierna che richiede voli che durano alcune settimane”. “Olimpo – aggiunge Battiston – è il piu grande carico, circa due tonnellate, mai lanciato dalle isole Svalbard, uno strumento sofisticato per studiare i dettagli della radiazione elettromagnetica che proviene direttamente dal Big-Bang. Sfruttando i venti di alta quota che seguono un percorso circolare in senso orario, il pallone volerà attorno al polo nord per circa una settimana raccogliendo dati scientifici unici”. Grande soddisfazione nel team scientifico: “Sono stati lo sforzo e la dedizione continua di un team di scienziati e studenti che hanno consentito la realizzazione del più grande telescopio da pallone stratosferico mai lanciato”, è il commento a caldo di Silvia Masi PI di OLIMPO, del Dipartimento di Fisica dell’Università La Sapienza. “Grazie alla sua notevole apertura ed alla estrema sensibilità dei nuovi rivelatori ci aspettiamo importanti risultati sugli ammassi di galassie e sulle prime strutture che si sono formate nell’universo”, aggiunge. “È stata una lotta contro il tempo meteorologico avverso durante quasi tutta la finestra di lancio”, dichiara Domenico Spoto Project Manager ASI delle operazioni. “Il team delle operazioni ha saputo aspettare e cogliere con grande professionalità e tempestività il momento giusto per il lancio”. “Aspettiamo da anni questo momento”, chiosa Elisabetta Tommasi che ha seguito la realizzazione dello strumento per l’Unità Esplorazione e Osservazione dell’Universo di ASI”, le difficoltà sono state molte, dall’ottimizzazione dei nuovi rivelatori, alla realizzazione di un sistema di telemetria adeguato, all’ottenimento del permesso di sorvolo del territorio russo, ma nessuno si è arreso e ora aspettiamo i risultati scientifici per trarre i frutti dell’impegno profuso.

Sorgente di neutrini e fotoni

Sorgente di neutrini e fotoni

Per la prima volta, gli scienziati sono riusciti a individuare la possibile sorgente di un neutrino cosmico grazie all’associazione con una sorgente di raggi gamma, cioè fotoni di alta e altissima energia. Si tratta di un blazar, ossia una galassia attiva con un buco nero supermassiccio al centro, distante 4,5 miliardi di anni luce, in direzione della costellazione di Orione. A questo straordinario risultato, pubblicato su Science, i ricercatori sono arrivati combinando i dati del rivelatore di neutrini IceCube, che opera tra i ghiacci del Polo Sud, e altri 15 esperimenti per la rivelazione dei fotoni da terra e nello spazio. L’Istituto Nazionale di Astrofisica (INAF), l’Istituto Nazionale di Fisica Nucleare (INFN), l’Agenzia Spaziale Italiana (ASI) e varie Università italiane hanno dato contributi determinanti attraverso la partecipazione dei propri ricercatori a molti degli esperimenti e osservatori coinvolti nella scoperta.

Questa osservazione senza precedenti, frutto del lavoro “corale” dell’astronomia multimessaggero, ha fornito anche un solido indizio verso la spiegazione di uno dei maggiori misteri ancora irrisolti: l’origine dei raggi cosmici di altissima energia. I raggi cosmici sono, infatti, composti prevalentemente da protoni, particelle elettricamente cariche che sono quindi deviate dai campi magnetici che permeano lo spazio, impedendoci di risalire alla loro origine. Un aiuto per chiarire questo mistero, che dura da oltre 100 anni, arriva dai neutrini che sono prodotti proprio dai protoni di alta energia. Essendo particelle neutre e con massa piccolissima, i neutrini non vengono deviati dai campi magnetici e interagiscono pochissimo con la materia, dimostrandosi dunque perfetti messaggeri, in grado di portarci diritti alla loro origine.

Il presidente dell’Agenzia Spaziale Italiana, Roberto Battiston, sottolinea che si tratta di “un altro grande risultato dell’astronomia multimessaggero, oltre ai fotoni e alle onde gravitazionali, sorgenti estremamente energetiche nell’universo comunicano con noi attraverso neutrini di altissima energia. Grazie a questa nuova astronomia l’universo ogni giorno diventa più piccolo e meno sconosciuto, grazie ai sofisticati strumenti a terra e nello spazio sviluppata dai ricercatori di ASI, INAF e INFN”. Nichi D’Amico, presidente dell’INAF, osserva come, anche in questa scoperta, come nel caso dell’emissione di onde gravitazionali da parte del primo merger di due stelle di neutroni mai osservato, la potenza di fuoco di cui dispone l’INAF, a tutte le lunghezze d’onda e con strumentazione di avanguardia da terra e dallo spazio, si è dimostrata determinante per rispondere ad alcune delle domande fondamentali per la comprensione dell’universo”.

Era il 22 settembre 2017 quando il rivelatore di neutrini IceCube osservava un interessante neutrino, battezzato poi IC-170922A. Interessante perché la sua energia molto elevata, pari a 290 TeV (teraelettronvolt, mille miliardi di elettronvolt), indicava, con ogni probabilità, che era stato originato da un lontano oggetto celeste molto “attivo”. Poiché, in base alle teorie, la produzione di neutrini cosmici è sempre accompagnata da raggi gamma, quando IceCube ha visto IC-170922A ha subito lanciato un “allerta neutrino” a tutti i telescopi, disseminati nello spazio e sulla Terra, nella speranza che le loro osservazioni potessero aiutare a individuarne con precisione la sorgente. E così è stato.

Il satellite Fermi, realizzato dalla NASA e che conta su una importante partecipazione di ASI, INAF e INFN, osservando con il telescopio LAT i raggi gamma molto energetici provenienti dalla direzione del neutrino, ha trovato un’emissione coincidente con una sorgente di raggi gamma che era in stato “eccitato”. Era il blazar TXS 0506+056: un nucleo galattico attivo, cioè un buco nero supermassiccio al centro di una galassia che espelle un getto di materia relativistica, flussi di particelle e radiazioni energetiche a velocità vicine a quella della luce. Fermi-LAT ha diramato subito l’allerta tramite un ATel, un Telegramma Astronomico come viene chiamato, che ha consentito a tutti gli altri 14 esperimenti di puntare la sorgente. Il satellite italiano AGILE, realizzato da ASI con il contributo di INAF e INFN, ha quindi confermato l’informazione di Fermi-LAT con un altro Telegramma. Anche i telescopi MAGIC, realizzati e gestiti con il contributo importante di INAF e INFN, sull’isola di La Palma alle Canarie, che studiano i raggi gamma da terra attraverso la radiazione Cherenkov prodotta dall’interazione dei fotoni gamma provenienti dalle sorgenti celesti con l’atmosfera terrestre, hanno orientato i loro giganteschi specchi verso la sorgente riuscendo, con 12 ore di osservazione, a rivelarla osservandola a un’energia mille volte maggiore di quella di Fermi, fornendo così un altro importante pezzo per il completamento di questa scoperta.

Tra gli esperimenti che studiano i fotoni e che hanno rivelato la sorgente, ci sono anche altri tre satelliti con una significativa partecipazione italiana: Swift, della NASA, che ha un piccolo campo di vista ma una elevata capacità di ‘girarsi’ per ripuntare velocemente una sorgente improvvisamente ‘eccitata’, NuSTAR, sempre della NASA, che con i propri telescopi per i raggi X riesce a fare immagini dell’Universo ad alta energia, e INTEGRAL, dell’ESA, che non hanno visto la sorgente ma ha fornito un limite superiore alla sua intensità, permettendo agli scienziati di escludere che il neutrino fosse associato a un lampo di raggi gamma (GRB, Gamma Ray Burst). Grazie alla combinazione di tutte le diverse osservazioni è stato così possibile individuare proprio nel blazar TXS 0506+056, che si trova al cuore di una galassia a una distanza di 4,5 miliardi di anni luce dalla Terra, la probabile sorgente del neutrino. La distanza di tale galassia ospite è stata misurata da un team di ricercatori dell’INAF di Padova.

L’identificazione della sorgente dei raggi cosmici

Diversamente dal caso delle onde gravitazionali e del violento lampo gamma prodotti nella fusione di due stelle di neutroni, dove l’identificazione della sorgente si basava su una coincidenza temporale molto stretta, l’associazione fra il neutrino di IceCube e la sorgente TXS 0506+056, indicata dal telescopio LAT a bordo di Fermi, si fonda sulla coincidenza di posizione, all’interno di un decimo di grado, la cui affidabilità è stata calcolata basandosi sui dati Fermi-LAT. Per riuscire ad associare IC-170922A con la sorgente TXS 0506+056, il team Fermi-LAT ha dovuto riprodurre l’intero cielo gamma e studiarne la variabilità arrivando a valutare la probabilità di una coincidenza spaziale spuria a meno dell’1%. Un ulteriore indizio viene dall’osservazione da parte di MAGIC dei fotoni gamma a energie prossime a quelle del neutrino rivelato da IceCube, che rende questa associazione ancora più stringente e permette di avere un quadro più chiaro sull’origine di entrambe le emissioni. Nel blazar TXS 0506+056 il getto, alimentato dalla materia espulsa dal disco di accrescimento del buco nero nel quale era precipitata, è proprio la regione in cui le osservazioni di onde radio e di raggi gamma ci dicono che vengono accelerate particelle di alta energia. Adesso, che oltre ai raggi gamma abbiamo osservato anche un neutrino molto energetico, possiamo concludere che, oltre agli elettroni (e ai positroni), ci sono sicuramente anche protoni accelerati. Possiamo, inoltre, affermare che, per produrre il neutrino osservato, questi protoni sono sicuramente di energia estremamente elevata. Oltre a testimoniare in maniera chiara la presenza di protoni accelerati, il neutrino IC-170922A ci permette di risolvere, in parte, il mistero rappresentato dai raggi cosmici di energie estreme. Questo straordinario risultato della neonata astronomia multimessaggero conferma dunque la strettissima connessione che sussiste tra i diversi messaggeri cosmici.